基于Logit模型的电动自行车驾驶人受伤严重程度影响因素研究  被引量:5

Research on Influencing Factors of Injury Severity of Electric Bicycle Drivers Based on Logit Model

在线阅读下载全文

作  者:董傲然 王长帅 景云超 叶飞[1] 朱彤[1] DONG Aoran;WANG Changshuai;JING Yunchao;YE Fei;ZHU Tong(College of Transportation Engineering,Chang’an University,Xi’an 710064,China;School of Transportation,Southeast University,Nanjing 210096,China)

机构地区:[1]长安大学运输工程学院,西安710064 [2]东南大学交通学院,南京210096

出  处:《武汉理工大学学报(交通科学与工程版)》2021年第2期243-247,共5页Journal of Wuhan University of Technology(Transportation Science & Engineering)

基  金:国家自然科学基金项目(51178054)。

摘  要:基于来源于交警的500起电动自行车与汽车碰撞的视频事故数据,从人、车辆、道路、环境4方面选取15个自变量进行分析,通过建立有序Logit与多项Logit事故伤害严重程度预测模型,分析15个因素对电动车驾驶人受伤严重程度的影响状况,并对比分析2个模型的预测效果.研究表明:汽车驾驶人的避险动作和违章类型、电动车驾驶人避险动作和违章类型、汽车类型、事故发生的时段、天气状况以及电动车可见时间8个自变量与伤害严重程度显著相关.Based on the video accident data of 500 collisions between electric bicycles and cars from traffic police,15 independent variables were selected from four aspects:people,vehicles,roads and environment.By establishing an ordered Logit and multiple Logit accident injury severity prediction model,the influence of 15 factors on the injury severity of electric vehicle drivers was analyzed,and the prediction effects of the two models were compared and analyzed.The research shows that eight independent variables,i.e.,automobile drivers’avoidance actions and violation types,electric vehicle drivers’avoidance actions and violation types,automobile types,accident time,weather conditions and visible time of electric vehicles,are significantly related to injury severity.

关 键 词:交通安全 事故伤害严重程度 电动自行车驾驶人 风险因素 视频分析 LOGIT模型 

分 类 号:U491.31[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象