检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫华 刘嘉[1] 位凯志 古亮 YAN Hua;LIU Jia;WEI Kai-Zhi;GU Liang(Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518071,China;Sangfor Technologies Inc.,Shenzhen 518071,China)
机构地区:[1]中国科学院深圳先进技术研究院,深圳518071 [2]深信服科技股份有限公司,深圳518071
出 处:《计算机系统应用》2021年第5期39-46,共8页Computer Systems & Applications
基 金:中国博士后科学基金(2020M682837)。
摘 要:宏病毒在高级持续性威胁中被广泛运用.其变形成本低廉且方式灵活,导致传统的基于病毒规则库的反病毒系统难于有效对抗.提出一种基于梯度提升决策树的变形宏病毒检测方法.该方法以病毒专家经验为指导,实施大规模特征工程,基于词法分析对变形宏病毒做细粒度建模,并使用海量样本训练模型.实验表明,该方法能够准确检测企业级用户网络中传播的真实变形宏病毒和主流变形工具生成的变形宏病毒;对400万个宏程序样本进行10折交叉验证,准确率和召回率分别达到99.41%和97.34%,优于现有其他方法.Macro malware is widely used in advanced persistent threats.Macro obfuscation is low-cost and flexible,rendering traditional rule-based anti-malware systems insufficient.A gradient-boosting-decision-tree-based approach to detecting obfuscated macro malware is proposed.The approach performs large-scale feature engineering guided by the expertise of malware specialists,with fine-grained modeling for obfuscated macro malware carried out on top of lexical analysis,and massive samples are used to train the model.Experimental results show that the approach is able to precisely detect real-world obfuscated macro malware found in the network of enterprise customers,as well as those variants generated by mainstream obfuscation tools;10-fold cross validation is carried out for a total of 4000000 macro programs,giving a precision of 99.41%and a recall of 97.34%,which outperforms existing works.
关 键 词:信息安全 宏病毒 反病毒 机器学习 梯度提升决策树
分 类 号:TP309.5[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49