基于改进CL-ML方法的接地网不开挖腐蚀速率预测模型  被引量:4

The Non-excavation Corrosion Rate Prediction Model of Grounding Grid Based on Improved CL-ML Method

在线阅读下载全文

作  者:李文彬 王勇 冯砚厅 王庆 徐雪霞 范孝良[2] 王鹏[2] LI Wenbin;WANG Yong;FENG Yanting;WANG Qing;XU Xuexia;FAN Xiaoliang;WANG Peng(Electric Power Research Institute,State Grid Hebei Electric Power Company,Shijiazhuang 050021,China;School of Energy Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China)

机构地区:[1]国网河北省电力公司科学研究院,河北石家庄050021 [2]华北电力大学能源动力与机械工程学院,河北保定071003

出  处:《电力科学与工程》2021年第4期49-54,共6页Electric Power Science and Engineering

基  金:国家自然科学基金(51607067);国网河北省电力有限公司科技项目(kj2019-063)。

摘  要:接地网是保障电网完全运行的重要部件,但接地网材料易被腐蚀,甚至发生断裂。鉴于接地网腐蚀存在样本数目少、非线性强的特点,在引入对比学习(contrastive learning,CL)和度量学习(metric learning,ML)的基础上,将对比学习和度量学习进行了组合优化,使输出结果变为参与拟合锚点的腐蚀速率系数,在此基础上提出了基于改进CL-ML方法的接地网不开挖腐蚀速率预测模型。该方法把已经采样的珍贵样本作为锚点,显著减小了拟合函数的压力与复杂性,并充分挖掘了稀有样本的内在相关性。试验结果表明,采用该模型的预测结果比采用广义回归神经网络和BP神经网络具有更高的精度。Grounding grid is an important component to ensure the safety operation of power grid.However,the grounding grid material is easy to be corroded or even broken.In view of the small number of samples and strong nonlinear characteristics of grounding grid corrosion,the idea of contrastive learning(CL)and metric learning(ML)was introduced in this paper.The combined optimization of the CL and ML method was carried out to change the output result into the corrosion rate coefficient involved in fitting the anchor point.Thus,a new non-excavation corrosion rate prediction model of grounding grid based on improved CL-ML method was proposed.This method takes the precious samples as anchor points,which not only significantly reduces the pressure and complexity of fitting function but also fully excavates the intrinsic correlation of rare samples.The experimental results show that the prediction results of this model are more accurate than those of generalized regression neural network and BP neural network.

关 键 词:接地网 腐蚀 比较学习 度量学习 预测 

分 类 号:TM73[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象