检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李盼 张霄雁[1] 孟祥福[1] 赵路路 齐雪月 LI Pan;ZHANG Xiaoyan;MENG Xiangfu;ZHAO Lulu;QI Xueyue(School of Electronic and Information Engineering,Liaoning Technical University,Huludao 125105,China)
机构地区:[1]辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛125105
出 处:《智能系统学报》2020年第6期1163-1174,共12页CAAI Transactions on Intelligent Systems
基 金:国家自然科学基金面上项目(61772249).
摘 要:现有的空间关键字查询处理模式大都仅支持位置相近和文本相似匹配,但不能将语义相近但形式上不匹配的对象提供给用户;并且,当前的空间−文本索引结构也不能对空间对象中的数值属性进行处理。针对上述问题,本文提出了一种支持语义近似查询的空间关键字查询方法。首先,利用词嵌入技术对用户原始查询进行扩展,生成一系列与原始查询关键字语义相关的查询关键字;然后,提出了一种能够同时支持文本和语义匹配,并利用Skyline方法对数值属性进行处理的混合索引结构AIR-Tree;最后,利用AIR-Tree进行查询匹配,返回top-k个与查询条件最为相关的有序空间对象。实验分析和结果表明,与现有同类方法相比,本文方法具有较高的执行效率和较好的用户满意度;基于AIR-Tree索引的查询效率较IRS-Tree索引提高了3.6%,在查询结果准确率上较IR-Tree和IRS-Tree索引分别提高了10.14%和16.15%。Most spatial keyword query processing models only support the location proximity and text similarity matching.However,in terms of text information processing,spatial objects with similar semantics but mismatched forms cannot be filtered out and provided to query users.Furthermore,the current spatial-text index structure cannot process the numerical attributes.To solve the above problem,this paper proposes a spatial keyword query method that can support the semantic approximate query processing.Word embedding technology is used to expand the users’original queries and generate a series of query keywords semantically related to the original query keywords.Then,a hybrid index structure AIR-tree that can support text and semantic matching and use the Skyline method to process numerical attributes is proposed.Finally,AIR-tree is used for query matching to return the top-k ordered spatial objects most closely related to the query conditions.Experimental analysis and results show that compared with similar methods,this method has a higher execution efficiency and better user satisfaction.The query efficiency based on the AIR-tree index is 3.6%higher than that of the IRS-tree index.In terms of accuracy,IR-tree and IRS-tree are increased by 10.14%and 16.15%,respectively,compared with AIR-tree.
关 键 词:空间关键字查询 词嵌入 语义近似查询 文本 数值属性 索引结构 查询匹配
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49