一种基于POI大数据的城市核心区识别方法  被引量:12

A Method for Identifying the Urban Nuclei based on POI Big Data

在线阅读下载全文

作  者:康翔 潘剑君[2] 朱燕香 白浩然 卢晓丽 Kang Xiang;Pan Jianjun;Zhu Yanxiang;Bai Haoran;Lu Xiaoli(College of Public Administration,Nanjing Agricultural University,Nanjing 210095,China;College of Resources and Environmental Sciences,Nanjing Agricultural University,Nanjing 210095,China)

机构地区:[1]南京农业大学公共管理学院,江苏南京210095 [2]南京农业大学资源与环境科学学院,江苏南京210095

出  处:《遥感技术与应用》2021年第1期237-246,共10页Remote Sensing Technology and Application

基  金:江苏省高校优势学科建设工程资助项目(PAPD)。

摘  要:城市核心区在城市功能的发挥中扮演着重要的角色,多核心式城市结构已成为一种重要的城市空间模式,但目前对于城市核心区识别研究却较为缺乏,快速而准确地提取城市核心区对于管理者进行精细的管理与规划有重要意义。研究提出一种基于兴趣点大数据(Point of Interest,POI)的城市核心区识别方法,结果发现应用该方法成功识别了案例城市的核心区,提供了其空间范围,对于城市核心区结构也有很好的探测效果。另外,通过相关检验证明了识别结果的合理性与可靠性。与传统研究不同的是,该方法可以提取城市核心区范围,并且方法简洁。研究结果表明:这种基于POI大数据的城市核心区识别方法能准确定位城市核心区位置,为日后城市规划与城市精细管理提供有价值的空间位置参考信息。Urban nuclei play a crucial role in conducting urban function,polycentric urban structure have become an important urban spatial model.However,there have few studies about the identification of urban nuclei.Rapid and precise extraction of urban nuclei is significative for urban management and planning.Our research introduced a method for identifying urban nuclei based on point of interest big data.Study indicated that our method successfully identified the urban nuclei in the case city,provided their spatial range,and also showed a fine detection effect on the structure of urban nuclei.In addition,the rationality and reliability of the results were checked through related tests.Different from traditional studies,our method can identify the boundary of urban nuclei,which is also convenience and simple.The results indicated that this urban nuclei identification method based on POI big data can accurately locate the location of urban nuclei,which might provide valuable spatial location reference information for urban planning and precise management in the future.

关 键 词:城市核心区 POI大数据 城市多核结构 城市规划 

分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象