检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李德奎 LI Dekui(Department of Science Teaching,Gansu University of Chinese Medicine,Dingxi 743000,Gansu,China)
机构地区:[1]甘肃中医药大学理科教学部,甘肃定西743000
出 处:《武汉大学学报(理学版)》2021年第2期190-198,共9页Journal of Wuhan University:Natural Science Edition
基 金:国家自然科学基金(61364001);甘肃省高等学校创新基金(2020A-191);甘肃中医药大学科学研究与创新基金(2019KCYB-10)。
摘 要:为了增强混沌系统应用的电路基础,提高混沌保密通信的安全级别,研究新四翼超混沌系统的电路仿真及其错位广义修正函数投影同步问题。首先基于新四翼超混沌系统的状态方程,应用电路设计原理,搭建新四翼超混沌系统的仿真电路。然后提出混沌系统的错位广义修正函数投影同步,基于Lyapunov稳定性定理,构造自适应同步控制器及系统未知参数的辨识法则,实现新四翼超混沌系统的错位广义修正函数投影同步。最后数值仿真得到与理论分析相同的结果,并给出控制器的反馈增益系数向量与同步时间的关系。In order to enhance the circuit foundation to chaotic system being applied and improve the security level of chaotic secret communication, the circuit simulation of a new four-wing hyperchaotic system and its dislocation generalized modified function projective synchronization(DGMFPS)are studied. Firstly, based on the state equations of the new four-wing hyperchaotic system, its simulation circuit is constructed by using the circuit design principle. Then the DGMFPS of chaotic system is proposed.Based on Lyapunov stability theorem, the adaptive synchronization controller and the identification rules of the system’s unknown parameters are constructed to implement the DGMFPS of the new four-wing hyperchaotic system. Finally, the numerical simulation results are the same as ones of the theoretical analysis, and the relationship is given between the feedback gain coefficient vector and the synchronization time.
关 键 词:新四翼超混沌系统 电路仿真 错位广义修正函数投影同步
分 类 号:TP271.62[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62