检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《电子元器件与信息技术》2021年第1期55-57,共3页Electronic Component and Information Technology
摘 要:针对拜耳法生产氧化铝过程中无法实时获取氧化铝溶出效果的问题,建立了极端梯度提升算法(Extreme Gradient Boosting,XGBoost)和极限学习机(Extreme Learning Machine,ELM)相结合的氧化铝溶出率预测模型,综合考虑影响氧化铝溶出率的多种因素,首先利用XGBoost算法对这些因素做重要性排序,把重要性较大的作为ELM的输入,然后对构建的ELM预测模型进行训练,最后对样本进行仿真并与SVR算法和未经过XGBoost算法处理的ELM预测模型进行对比,结果表明,XGBoost-ELM模型具有较高的预测效果且速度较快。
分 类 号:TF821[冶金工程—有色金属冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49