检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHANG Yong MU Chaoxu LU Ming 张勇;穆朝絮;鲁明(天津大学电气自动化与信息工程学院,中国天津300072;北京控制工程研究所,中国北京100190)
机构地区:[1]School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,P.R.China [2]Beijing Institute of Control Engineering,Beijing 100190,P.R.China
出 处:《Transactions of Nanjing University of Aeronautics and Astronautics》2021年第2期225-236,共12页南京航空航天大学学报(英文版)
基 金:This work was supported by the National Natural Science Foundation of China(No.62022061);Tianjin Natural Science Foundation(No.20JCYBJC00880);Beijing Key Laboratory Open Fund of Long-Life Technology of Precise Rotation and Transmission Mechanisms.
摘 要:Single gimbal control moment gyroscope(SGCMG)with high precision and fast response is an important attitude control system for high precision docking,rapid maneuvering navigation and guidance system in the aerospace field.In this paper,considering the influence of multi-source disturbance,a data-based feedback relearning(FR)algorithm is designed for the robust control of SGCMG gimbal servo system.Based on adaptive dynamic programming and least-square principle,the FR algorithm is used to obtain the servo control strategy by collecting the online operation data of SGCMG system.This is a model-free learning strategy in which no prior knowledge of the SGCMG model is required.Then,combining the reinforcement learning mechanism,the servo control strategy is interacted with system dynamic of SGCMG.The adaptive evaluation and improvement of servo control strategy against the multi-source disturbance are realized.Meanwhile,a data redistribution method based on experience replay is designed to reduce data correlation to improve algorithm stability and data utilization efficiency.Finally,by comparing with other methods on the simulation model of SGCMG,the effectiveness of the proposed servo control strategy is verified.单框架控制力矩陀螺(Single gimbal control moment gyroscope,SGCMG)具有高精度、快速响应的特点,是航天领域高精度对接、快速机动导航和制导系统的重要姿态控制系统。本文考虑多源干扰的影响,设计了一种基于数据的反馈再学习(Feedback relearning,FR)算法,用于SGCMG框架伺服系统的鲁棒控制。基于自适应动态规划和最小二乘原理,通过采集SGCMG系统的在线运行数据,采用FR算法得到伺服控制策略。这是一种无模型学习策略,无须事先了解SGCMG模型。进而,基于强化学习机制将伺服控制策略与SGCMG系统动态相互作用,可以实现伺服控制策略对多源干扰的自适应评估和改进。同时,设计了一种基于经验回放的数据重分配方法,降低了数据相关性,提高了算法稳定性和数据利用率。最后,在SGCMG仿真模型上与其他方法进行了比较,验证了所提出的伺服控制策略的有效性。
关 键 词:control moment gyroscope feedback relearning algorithm servo control reinforcement learning multisource disturbance adaptive dynamic programming
分 类 号:TN925[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.187.205