检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔守业[1] CUI Shouye(Research Institute of Petroleum Processing,SINOPEC,Beijing 100083,China)
机构地区:[1]中国石化石油化工科学研究院,北京100083
出 处:《石油学报(石油加工)》2021年第3期662-668,共7页Acta Petrolei Sinica(Petroleum Processing Section)
摘 要:以催化裂化原料和裂化液相产物(汽油、轻循环油(LCO)、油浆)的20℃密度、硫质量分数、30%馏出温度、50%馏出温度为4个基本回归因子,并根据其交互作用构造了10个交互回归因子,采用逐步回归法建立了4种馏分中氢质量分数的回归模型(汽油不考虑硫质量分数的影响,故为9个回归因子)。各模型回归结果表明,4种模型的校正决定系数R 2分别为0.868、0.727、0.949、0.973,标准化残差均基本沿0水平线上下分布,说明回归模型较为理想。采用文献数据验证模型预测效果,结果表明,4种模型预测结果的均方误差在0.00943~0.03150,均方根误差在0.0971~0.1780,模型预测效果较好。说明所建立的氢质量分数回归模型可用于催化裂化原料和产物汽油、轻循环油、油浆中氢质量分数的快捷有效预测。Stepwise regression method was used to construct regression models to characterize the hydrogen mass fraction suitable for FCC feedstock and liquid products by using density of 20℃,sulfur mass fraction,30%distillation temperature,50%distillation temperature and 10 interaction factors(9 regression factors for gasoline without considering the effect of sulfur mass fraction).The regression results of 4 hydrogen mass fraction regression models show that the adjusted R 2 of feedstock,gasoline,LCO and slurry models are 0.868,0.727,0.949 and 0.973,respectively.The standardized residuals are equally distributed around the zero horizontal line,indicating that the regression model is ideal.Furthermore,the testing results show that the mean square error of the prediction results are in 0.00943-0.03150,and the root mean square error are from 0.0971 to 0.1780,indicating that the model has a good prediction accuracy.Overall,the constructed model could be used to predict the hydrogen mass fraction of FCC feedstock and liquid products quickly and effectively.
分 类 号:TE624[石油与天然气工程—油气加工工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.216.164