检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张贵仓 拓明秀 苏金凤 孟建军[2] 韩根亮 ZHANG Gui-cang;TUO Ming-xiu;SU Jin-feng;MENG Jian-jun;HAN Gen-liang(School of Mathematics & Statistics,Northwest Normal University,Lanzhou,730070;Mechanical T&R Institute,Lanzhou Jiaotong University,Lanzhou 730070;Key Laboratory of Sensor and Sensing Technology,Lanzhou 730030,China)
机构地区:[1]西北师范大学数学与统计学院,甘肃兰州730070 [2]兰州交通大学机电技术研究所,甘肃兰州730070 [3]甘肃省传感器与传感技术重点实验室,甘肃兰州730030
出 处:《计算机工程与科学》2021年第5期897-906,共10页Computer Engineering & Science
基 金:国家自然科学基金(61861040);甘肃省教育厅科技成果转化项目(2017D-09);甘肃省科学院应用研究与开发项目(2018JK-02);甘肃省重点研发计划(20YF8GA125);甘肃省传感器与传感技术重点实验室开放基金(KF-6);兰州市科技计划(2018-4-35)。
摘 要:利用权的思想并结合奇异混合技术,对传统的拟Bézier曲线进行扩展,构造了一种带形状参数的奇异混合拟Bézier曲线。首先将奇异混合函数和三角多项式空间的拟三次Bézier基函数相结合得到奇异混合拟Bézier曲线的定义,进而根据奇异混合拟Bézier曲线的定义反推出奇异混合拟Bézier基函数;接着讨论了奇异混合拟Bézier基函数及其对应曲线的性质,并探究了奇异混合函数及参数对二者的影响;最后给出了奇异混合拟Bézier曲线曲面的设计实例。实验结果表明,与传统Bézier曲线相比,本文构造的曲线在具有传统Bézier曲线实用性质的同时还具有灵活的形状可调性,新曲线不仅能够精确表示二次曲线,并且在满足特定条件时曲线还能够达到G1及G2连续,将曲线运用张量积方法拓展到曲面还可以精确表示椭球面及球面。大量的分析以及实例表明,本文构造的曲线在几何造型设计中十分有效。Weighting idea and singular blending technology are used to extend the traditional quasi-Bézier curve,and a singular blending quasi-Bézier curve with shape parameters is constructed.Firstly,the singular blending function and the quasi-cubic Bézier basis function of the triangular polynomial space are combined to obtain the definition of the singular blending quasi-Bézier curve,and the singular blending quasi-Bézier basis function is deduced according to the definition of the singular blending quasi-Bézier curve.Secondly,we discuss the singular blending quasi-Bézier basis functions and the properties of their corresponding curves,and explore the influences of singular blending and parameters on them.Finally,an example of a singular blending quasi-Bézier curve and surface design is given.The experimental results show that the curve constructed in this paper has the flexible shape adjustability while having the practical properties of the traditional Bézier curve.The new curve can not only accurately represent conic curves such as elliptical arc,circular and parabola arc,but also achieve G1 and G2 continuity under certain conditions.Extending the curve to the surface using the tensor product method can also accurately represent the ellipsoid and the spherical surface.A large number of analysis and examples prove that the curves constructed in this paper are very effective in geometric design.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68