基于迁移学习的轴承剩余使用寿命预测方法  被引量:12

Bearing Remaining Useful Life Prediction Method Based on Transfer Learning

在线阅读下载全文

作  者:王新刚[1] 韩凯忠 王超[1] 李林 WANG Xin-gang;HAN Kai-zhong;WANG Chao;LI Lin(School of Mechanical Engineering&Automation,Northeastern University,Shenyang 110819,China.)

机构地区:[1]东北大学机械工程与自动化学院,辽宁沈阳110819

出  处:《东北大学学报(自然科学版)》2021年第5期665-672,共8页Journal of Northeastern University(Natural Science)

基  金:中央高校基本科研业务费专项资金资助项目(N2023023);北京卫星环境工程研究所CAST-BISEE项目(CAST-BISEE2019-019);河北省自然科学基金资助项目(E2020501013).

摘  要:针对目前大多数基于人工智能的轴承剩余使用寿命(remaining useful life,RUL)预测方法不能很好地预测不同工况下轴承剩余寿命的问题,提出了一种基于迁移学习的寿命预测方法,对不同工况下的轴承进行剩余寿命预测.对采集的轴承原始振动信号进行傅里叶变换得到频域信号,以卷积神经网络和长短时记忆网络作为特征提取器对轴承频域信号进行特征提取并挖掘数据之间的时序信息,采用全局和局部域适应相结合的方法降低不同工况下轴承数据的分布差异.通过现有多种工况下轴承运行数据验证了该方法的有效性.与传统深度学习模型相比,所提方法提高了不同工况下轴承RUL预测精度.To address the problem that most bearing remaining useful life(RUL)prediction methods based on artificial intelligence cannot well predict bearing RUL under different working conditions,a transfer learning method was proposed to predict bearing RUL under different working conditions.Fourier transform was applied to the raw vibration signals of the bearing to obtain the frequency-domain signals,and convolutional neural network(CNN)and long short-term memory network(LSTM)were used to extract the features between data of the bearing′s frequency-domain signals and mine temporal information.The method of combining global and local domain adaption was adopted to reduce the distribution differences of the bearing data under different working conditions.The effectiveness of the method was verified by the existing bearing data.Compared with the traditional deep learning models,the proposed method improves the accuracy of bearing RUL prediction under different working conditions.

关 键 词:轴承 剩余使用寿命 深度学习 迁移学习 领域适应 

分 类 号:TH133.33[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象