Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor  被引量:3

在线阅读下载全文

作  者:Pier Giorgio Schiavi Pietro Altimari Robertino Zanoni Francesca Pagnanelli 

机构地区:[1]Department of Chemistry,Sapienza University of Rome,Piazzale Aldo Moro n.5,00185 Rome,Italy

出  处:《Journal of Energy Chemistry》2021年第7期336-344,共9页能源化学(英文版)

摘  要:A novel process is reported which produces an asymmetric supercapacitor through the complete recycling of end-of-life lithium ion batteries.The electrodic powder recovered by industrial scale mechanical treatment of spent batteries was leached and the dissolved metals were precipitated as mixed metals carbonates.Nanowires battery-type positive electrodes were produced by electrodeposition into nanoporous alumina templates from the electrolytic baths prepared by dissolution of the precipitated carbonates.The impact of the different metals contained in the electrodic powder was evaluated by benchmarking the electrochemical performances of the recovered nanowires-based electrodes against electrodes produced by using high-purity salts.Presence of inactive Cu in the nanowires lowered the final capacitance of the electrodes while Ni showed a synergistic effect with cobalt providing a higher capacitance with respect to synthetic Co electrodes.The carbonaceous solid recovered after leaching was indepth characterized and tested as negative electrode.Both the chemical and electrochemical characterization indicate that the recovered graphite is characterized by the presence of oxygen functionalities introduced by the leaching treatment.This has led to the obtainment of a recovered graphite characterized by an XPS C/O ratio,Raman spectrum and morphology close to literature reports for reduced graphene oxide.The asymmetric supercapacitor assembled using the recovered nanowires-based positive electrodes and graphite as negative electrodes has shown a specific capacitance of 42 F g^(-1), computed including the whole weight of the positive electrode and recovered graphite,providing a maximum energy density of ~9 Wh kg^(-1) and a power density of 416 W kg^(-1) at 2.5 mA cm^(-2).

关 键 词:Lithium ion battery recyling Core-shell nanowires SUPERCAPACITORS Closed-loop recycling process 

分 类 号:TQ127.11[化学工程—无机化工] TM53[电气工程—电器] X705[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象