检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:樊雲瑞 张贤勇 杨霁琳[2] FAN Yun-rui;ZHANG Xian-yong;YANG Ji-lin(School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,China;Institute of Intelligent Information and Quantum Information,Sichuan Normal University,Chengdu 610066,China)
机构地区:[1]四川师范大学数学科学学院,四川成都610066 [2]四川师范大学智能信息与量子信息研究所,四川成都610066
出 处:《计算机工程与设计》2021年第5期1300-1306,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(61673258);四川省科技基金项目(19YYJC2845);四川省青年基金项目(2017JQ0046)。
摘 要:针对不确定性度量的强健构建与泛化推广,采用代数表示与信息表示的融合,提出模糊邻域粗糙集的决策熵。关于模糊决策概念,代数粗糙度的信息函数深入诱导出模糊邻域相对决策熵;关于模糊决策分类,决策类集成自然诱导出模糊邻域相对决策熵,融合依赖度改进出模糊邻域依赖决策熵。模糊邻域决策熵实施了代数与信息的复合构建,呈现关于属性与半径的双重粒化单调性,具有鲁棒的不确定性刻画能力,决策表实例与数据集实验验证了相关有效性。Aiming at construction and generalization of uncertainty measurement,decision-entropies of fuzzy neighborhood rough sets were proposed by fusing algebra and information representations.Regarding the fuzzy decision concept,the fuzzy-neighborhood relative decision-entropy was deeply defined by the information function of algebraic rough degree.Regarding the fuzzy decision classification,the fuzzy-neighborhood relative decision-entropy was naturally induced by hierarchical integration of decision classes,and it was further improved to the fuzzy-neighborhood dependency decision-entropy by combining with the dependency degree.Fuzzy-neighborhood decision-entropies implemented the composite construction of algebra and information,they exhibited dual granulation monotonicity regrading attributes and radii,and they had robust abilities of uncertainty measurement.Their effectiveness is verified by decision table examples and data set experiments.
关 键 词:模糊邻域粗糙集 不确定性度量 决策熵 粗糙度 依赖度 粒化单调性
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117