检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴响容[1] WU Xiang-rong(Logistics and Supply Chain Management School,Zhejiang Technical Institute of Economics,Hangzhou 310018,China)
机构地区:[1]浙江经济职业技术学院物流与供应链管理学院,浙江杭州310018
出 处:《机电工程》2021年第5期605-610,共6页Journal of Mechanical & Electrical Engineering
基 金:浙江省基础公益研究计划资助项目(LGG19F020009)。
摘 要:针对现有机械设备电子故障检测方法非线性逼近性能差的问题,提出了基于优化稀疏编码学习的检测算法研究。采用了稀疏表达的方式来识别机械设备电子故障信号,提高了检测算法全局寻优的能力,避免陷入局部最优解;通过提升过完备字典模型内部原子结构与故障信号的匹配度的方式,获取了精度更高的稀疏解;促使稀疏逼近后重构信号的周期性与原始信号保持一致,并引入了特征自学习方案;最后采用分段的方式提取了各段信号的稀疏表征,改善了对原始故障信号的控制与检测性能。研究结果表明:提出检测算法在信号故障特征提取方面与原始信号周期性峰值匹配度更高,重构信号的控制误差较低,在稀疏度值超过100时的时间消耗相对于现有检测方法具有更明显的优势。Aiming at the problem of poor nonlinear approximation performance of existing mechanical equipment electronic fault signal detection methods,a detection algorithm based on optimal sparse coding learning was proposed.The sparse expression was used to identify the electronic fault signal of mechanical equipment,which improved the global optimization ability of the detection algorithm and avoided getting into the local optimal solution.The sparse solution with higher accuracy was obtained by improving the matching degree between the atomic structure and fault signal in the over-complete dictionary model.The periodicity of the reconstructed signal after sparse approximation was consistent with the original signal,the feature self-learning scheme was introduced.Finally the sparse representation of each segment of the signal was extracted in a segmented way,and the control and detection performance of the original fault signal was improved.The results show that the proposed detection algorithm has a higher matching degree with the original signal periodic peak in signal fault feature extraction,a lower control error in reconstructed signal,and a better time consumption when the sparsity value exceeds 100 than the existing methods.
关 键 词:优化稀疏编码 松弛算法 稀疏解 自学习 机械设备电子故障检测
分 类 号:TH113[机械工程—机械设计及理论] TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229