信号相关杂波背景中极化雷达发射波形优化  被引量:1

Transmit Waveform Optimization of Polarimetric Radar in Signal-dependent Clutter

在线阅读下载全文

作  者:孙挺 程旭 SUN Ting;CHENG Xu(College of Network Engineering,Zhoukou Normal University,Zhoukou 466000,China;School of Electronic and Communication Engineering,Sun Yat-Sen University,Shenzhen 518107,China)

机构地区:[1]周口师范学院网络工程学院,周口466000 [2]中山大学电子与通信工程学院,深圳518107

出  处:《电子与信息学报》2021年第5期1275-1281,共7页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61801527);深圳市科技计划项目(KQTD20190929172704911);电子信息系统复杂电磁环境效应国家重点实验室开放基金(CEMEE2021K0201B)。

摘  要:波形优化可有效抑制干扰,显著改善雷达探测性能。针对全极化雷达,考虑发射波形满足能量和相似性双重约束,以最大化信杂噪比为准则,对发射波形和接收滤波器进行联合优化。该文设计了一种波形和滤波器的迭代优化算法,该方法序贯提高输出信杂噪比。算法的每一次迭代需要分别解决一个凸问题和隐凸问题,整个算法的计算量与迭代次数和接收滤波器长度分别呈线性和多项式关系。最后,通过仿真实验分析了算法的收敛性、优化波形的模糊度函数方面的性质,与其他算法进行了对比,结果表明:与现有方法相比,该文方法可实现信杂噪比的有效提升。Waveform optimization can effectively suppress the interference,and improve significantly radar performance.With considering polarimetric radars as the object of study and to maximize the output Signal-to-Clutter plus Noise Ratio(SCNR)as the merit of figure,an optimization problem of joint transmit waveform and receive filter design under both the energy and similarity constraints is constructed.Then,an optimization procedure for transmit signal and receive filter which improves sequentially the SCNR is exploited.Each iteration of the algorithm requires the solution of both a convex and a hidden convex optimization problem,and the resulting computational complexity is linear with the number of iterations and polynomial with the receive filter length.Finally,the convergence of the algorithm and the property of the optimized waveform in the ambiguous domain are analyzed through numerical experiments.Results show that,compared to the existing methods,the proposed approach improves significantly the SCNR.

关 键 词:极化雷达 波形优化 波形设计 相似性约束 

分 类 号:TN958[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象