二分粒度聚类和KELM的全景图像火焰识别研究  被引量:1

Research on Panoramic Image Flame Recognition Based on the Bisecting Granular Clustering and KELM

在线阅读下载全文

作  者:段锁林[1] 任云婷 潘礼正[1] 王一凡[2] DUAN Suo-lin;REN Yun-ting;PAN Li-zheng;WANG Yi-fan(Robotics Institute of Changzhou University,Jiangsu Changzhou 213164,China;Mechanical and Electrical Engineering College,Changzhou Vocational Institute of Textile and Garment,Jiangsu Changzhou 213164,China)

机构地区:[1]常州大学机器人研究所,江苏常州213164 [2]常州纺织服装职业技术学院机电工程学院,江苏常州213164

出  处:《机械设计与制造》2021年第5期133-138,共6页Machinery Design & Manufacture

基  金:国家自然科学基金(61773078);江苏省科技支撑计划项目(BEK2013671);常州市科技支撑计划(CE20175040);江苏省高等学校自然科学研究项目(18KJB460001)。

摘  要:针对现有灭火机器人视觉系统的窄视野且检测结果受光照变化干扰的问题,提出了一种应用于大视角全景图像火焰识别且抗光照变化干扰的二分粒度聚类优化的核极限学习机方法。首先,对全景图像建立抗光照变化干扰的颜色模型;然后在该颜色模型下利用经过二分和粒度思想改进的K-means聚类算法分割疑似火焰区域与非火区域;最终提取疑似火焰区域的颜色分量等特征参数作为输入向量来训练核极限学习机(KELM)分类器以提取火焰区域。经仿真研究证明,该算法能快速准确识别全景火焰图像,对光照变化具有良好的鲁棒性,且通用性强。Aiming at the narrow field of view of the existing fire-extinguishing robot vision system and the detection results are disturbed by the illumination variation,a flame recognition method for large-angle panoramic image and resistant to changes in illumination is proposed.It is kernel limit learning machine method for bisecting granular clustering optimization.Firstly,a color model that is resistant to illumination variation is established for the panoramic image.Then,using the K-means clustering algorithm improved by bisecting and granularity,the suspected flame region and non-fire region are segmented under the color model.Finally,the color component feature parameters of the suspected flame region are extracted as input vectors to train a kernel extreme learning machine(KELM)classifier to identify the flame region.Simulation results show that the algorithm has quickly and accurately effect on the processing of panoramic images with fire flame and good robustness with respect to the illumination variation,as well as stronger universality.

关 键 词:火焰识别 聚类分析 粒度计算 核极限学习机 柱状全景图像 

分 类 号:TH16[机械工程—机械制造及自动化] TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象