A Linear Frequency Principle Model to Understand the Absence of Overfitting in Neural Networks  被引量:2

在线阅读下载全文

作  者:Yaoyu Zhang Tao Luo Zheng Ma Zhi-Qin John Xu 张耀宇;罗涛;马征;许志钦(School of Mathematical Sciences,Institute of Natural Sciences,MOE-LSC,and Qing Yuan Research Institute,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Center for Brain Science and Brain-Inspired Technology,Shanghai 200031,China)

机构地区:[1]School of Mathematical Sciences,Institute of Natural Sciences,MOE-LSC,and Qing Yuan Research Institute,Shanghai Jiao Tong University,Shanghai 200240,China [2]Shanghai Center for Brain Science and Brain-Inspired Technology,Shanghai 200031,China

出  处:《Chinese Physics Letters》2021年第3期121-126,共6页中国物理快报(英文版)

基  金:Supported by the National Key R&D Program of China(Grant No.2019YFA0709503);the Shanghai Sailing Program;the Natural Science Foundation of Shanghai(Grant No.20ZR1429000);the National Natural Science Foundation of China(Grant No.62002221);Shanghai Municipal of Science and Technology Project(Grant No.20JC1419500);the HPC of School of Mathematical Sciences at Shanghai Jiao Tong University。

摘  要:Why heavily parameterized neural networks(NNs) do not overfit the data is an important long standing open question. We propose a phenomenological model of the NN training to explain this non-overfitting puzzle. Our linear frequency principle(LFP) model accounts for a key dynamical feature of NNs: they learn low frequencies first, irrespective of microscopic details. Theory based on our LFP model shows that low frequency dominance of target functions is the key condition for the non-overfitting of NNs and is verified by experiments. Furthermore,through an ideal two-layer NN, we unravel how detailed microscopic NN training dynamics statistically gives rise to an LFP model with quantitative prediction power.

关 键 词:networks NEURAL DETAILS 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象