检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐陶祎[1] 吴克 徐千栋 刘昊 XU Tao-yi;WU Ke;XU Qian-dong;LIU Hao(City College,Wuhan University of Science and Technology,Wuhan Hubei 430083,China)
出 处:《计算机仿真》2021年第4期225-229,共5页Computer Simulation
基 金:2020年地方高校国家级大学生创新创业训练项目(202013235001);2018年教育部产学研协同育人项目(201802027047)。
摘 要:现有的空气温湿度因子识别方法存在准确度较低、数据丢包率较高的问题,为此提出基于无线传感器的空气温湿度因子识别研究。根据传感器阶段与权重一一对应特征,以总均方误差最小化为前提,按照自适应模式寻找与传感器测量值对应的最佳权重,经迭代计算获取各节点测量值的无偏估计数值,归一化处理解得的各传感器测量值与预估值间的欧几里得距离,并作为自适应加权识别权重,完成自适应加权识别算法架构与二进制识别结果转换。实验结果表明,所提方法在两种环境中均具有较好的识别准确度,适用性比较理想,且有效避免数据丢包情况发生,具有较高的应用性能。At present, some methods have low accuracy and high data packet loss rate in the air temperature and humidity factor identification. Therefore, the study on air temperature and humidity factor identification based on wireless sensors was proposed. According to the one-to-one correspondence between stage and weight, we assumed that the total mean square error was minimized, and then we found the optimal weight corresponding to the sensor measurement value according to the adaptive mode. Through the iterative calculation, we got the unbiased estimation value of each node. After normalization, we calculated the Euclidean distance between the measured value and the estimated value of each sensor, and then took it as the adaptive weighted identification weight. Finally, the conversion between the architecture of the adaptive weighted recognition algorithm and the binary recognition results was completed. Experimental results prove that the proposed method has good recognition accuracy in two environments, and its applicability is ideal. Moreover, this method can effectively avoid the occurrence of data packet loss, so it has high application performance.
关 键 词:无线传感器 空气温湿度 因子识别 终端节点 温湿度传感器
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143