四重曲面奇点的一个注记  

A Note on Surface Singularities of Multiplicity Four

在线阅读下载全文

作  者:洪杰 陆俊 Jie HONG;Jun LU(School of Mathematical Sciences,and Shanghai Key Laboratory of PMMP,East China Normal University,Shanghai 200241,P.R.China)

机构地区:[1]华东师范大学数学科学学院及上海市核心数学与实践重点实验室,上海200241

出  处:《数学学报(中文版)》2021年第3期455-462,共8页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金(11671140);上海市核心数学与实践重点实验室基金(18dz2271000)。

摘  要:令P为复曲面Y之四重孤立奇点.众所周知,存在局部不可约有限覆盖π:(Y,P)→(X,p)满足π^(-1)(p)=P,以及Jung氏解消f:Y^(~)→Y.今设W_(p)为(π■f)^(-1)(p)之例外除子,我们将证明W_(p)有唯一基本闭链分解W_(p)=2Z1或W_(p)=∑α=1l Zα使其满足若干性质.我们将定义π于p处的指标w_(p),并用上述分解求其值.特别地,可证(Y,P)为奇点当且仅当w_(p)≥1.作为W_(p)分解式的另一应用,我们将计算Y^(~)收缩到极小解消所需的步数.Let P be an isolated singularity of multiplicity 4 of a complex surface Y.It is well-known that there is a locally irreducible finite coveringπ:(Y,P)→(X,p)withπ-1(p)=P,and a Jung’s resolution f:Y^(~)→Y.Let W_(p) be the exceptional divisor of(π○f)-1(p).We will prove that W_(p) has a unique decomposition into fundamental cycles W_(p)=2 Z1 or W_(p)=∑α=1l Zαsatisfying some conditions.We will define a local index w_(p) forπat p and compute it by the above decomposition of W_(p).In particular,we will show that(Y,P)is singular iff w_(p)≥1.As another application of the decomposition of W_(p),we also compute the number of blown-downs needed to get the minimal resolution fromY^(~).

关 键 词:基本闭链 曲面奇点 有限覆盖 Jung解消 典范解消 

分 类 号:O187.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象