多层次感知残差卷积网络的单幅图像超分重建  被引量:1

Single image super-resolution reconstruction based on multi-level perceptual residual convolutional network

在线阅读下载全文

作  者:何蕾[1] 程佳豪 占志钰 杨雯博 刘沛然 He Lei;Cheng Jiahao;Zhan Zhiyu;Yang Wenbo;Liu Peiran(Hefei University of Technology,Hefei 230601,China)

机构地区:[1]合肥工业大学,合肥230601

出  处:《中国图象图形学报》2021年第4期776-786,共11页Journal of Image and Graphics

基  金:国家自然科学基金项目(61502141)。

摘  要:目的单幅图像超分辨率重建的深度学习算法中,大多数网络都采用了单一尺度的卷积核来提取特征(如3×3的卷积核),往往忽略了不同卷积核尺寸带来的不同大小感受域的问题,而不同大小的感受域会使网络注意到不同程度的特征,因此只采用单一尺度的卷积核会使网络忽略了不同特征图之间的宏观联系。针对上述问题,本文提出了多层次感知残差卷积网络(multi-level perception residual convolutional network,MLP-Net,用于单幅图像超分辨率重建)。方法通过特征提取模块提取图像低频特征作为输入。输入部分由密集连接的多个多层次感知模块组成,其中多层次感知模块分为浅层多层次特征提取和深层多层次特征提取,以确保网络既能注意到图像的低级特征,又能注意到高级特征,同时也能保证特征之间的宏观联系。结果实验结果采用客观评价的峰值信噪比(peak signal to noise ratio,PSNR)和结构相似性(structural similarity,SSIM)两个指标,将本文算法其他超分辨率算法进行了对比。最终结果表明本文算法在4个基准测试集上(Set5、Set14、Urban100和BSD100(Berkeley Segmentation Dataset))放大2倍的平均峰值信噪比分别为37.8511 dB,33.9338 dB,32.2191 dB,32.1489 dB,均高于其他几种算法的结果。结论本文提出的卷积网络采用多尺度卷积充分提取分层特征中的不同层次特征,同时利用低分辨率图像本身的结构信息完成重建,并取得不错的重建效果。Objective Single image super-resolution reconstruction(SISR)is a classic problem in computer vision.SISR aims to reconstruct one high-resolution image from single or many low-resolution(LR)images.Currently,image super-resolution(SR)technology is widely used in medical imaging,satellite remote sensing,video surveillance,and other fields.However,the SR problem is an essentially complex and morbid problem.To solve this problem,many SISR methods have been proposed,including interpolation-based methods and reconstruction-based methods.Due to large amplification factors,the repair performance will drop sharply,and the reconstructed results are very poor.With the rise of deep learning,deep convolutional neural networks have also been used to solve this problem.Researchers have proposed a series of models and made significant progress.With the gradual understanding of deep learning techniques,researchers have found that deep network brings better results than shallow network,and too deep network can cause gradient explosion or disappearance.In addition,the gradient explosion or disappearance can cause the model to be untrainable and thus unable to achieve the best results through training.In recent years,most networks based on deep learning for single-image SR reconstruction adopt single-scale convolution kernels.Generally,a 3×3 convolution kernel is used for feature extraction.Although single-scale convolution kernels can also extract a lot of detailed information,these algorithms usually ignore the problem of different receptive field sizes caused by different convolution kernel sizes.Receptive fields of different sizes will make the network pay attention to different features;therefore,only using a 3×3 convolution kernel will cause the network to ignore the macroscopic relation between different feature images.Considering these problems,this study proposes a multi-level perception network based on Goog Le Net,residual network,and dense convolutional network.Method First,the feature extraction module is used as the i

关 键 词:深度学习 卷积神经网络(CNN) 单幅图像超分辨率(SISR) 多层次感知 残差网络 密集连接 DIV2K 

分 类 号:TP391.[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象