检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯斌 郭亦宗 陈页 郭创新[1] 杨波 黄旭锐 FENG Bin;GUO Yizong;CHEN Ye;GUO Chuangxin;YANG Bo;HUANG Xurui(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,China;Guangzhou Power Supply Bureau of Guangdong Power Grid Co.,Ltd.,Guangzhou 510600,China)
机构地区:[1]浙江大学电气工程学院,浙江省杭州市310027 [2]广东电网有限责任公司广州供电局,广东省广州市510600
出 处:《电力系统自动化》2021年第9期46-54,共9页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(51877190);广东电网有限责任公司广州供电局科技项目(GZHKJXM20180152)对本文工作的资助。
摘 要:为解决云储能日前充放电策略预测的问题,提出了一种基于门控循环单元(GRU)多步预测技术的云储能充放电策略形成方法。首先,鉴于云储能优化需求及单用户负荷预测效果不稳定,构建用户聚类后的GRU多步预测方法预测一天的24点功率。然后分析了云储能模式下的用户和云储能提供商两个主体的交互过程,以预测为基础建立了云储能充放电决策滚动优化模型。仿真算例选取实际数据,在预测聚类用户光伏、负荷功率后,滚动优化求解实际值和预测值下的云储能充放电策略。算例通过5种场景验证了在云储能充放电策略中聚类的作用以及GRU多步预测技术的优势,并且证明云储能模式能够进一步削弱光伏、负荷预测误差的影响。In order to solve the day-ahead charging and discharging strategy prediction problem of cloud energy storage(CES), a formation method of charging and discharging strategy of CES based on multi-step prediction technology for gated recurrent unit(GRU) is proposed. Firstly, in view of the CES optimization demand and the unstable effect of single-user load prediction, after user clustering, a multi-step prediction method of GRU is constructed to predict the power at 24 points of a day. Then, the interaction process between the user and the CES provider in the CES mode is analyzed, and the rolling optimization model of CES charging and discharging decision is established based on the prediction. In the simulation example, the actual data is used, and after the prediction of photovoltaic and load power of cluster users, the CES charging and discharging strategies for the actual data and the predicted data are solved by rolling optimization. Five scenarios are used to verify the role of clustering in CES charging and discharging strategy and the advantages of GRU multi-step prediction technology. It is also proven that cloud energy storage mode can further weaken the influence of photovoltaic and load prediction error.
关 键 词:云储能 充放电策略 门控循环单元 多步预测技术 滚动优化
分 类 号:TM91[电气工程—电力电子与电力传动] TP393.09[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145