检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡鹏 赵露露 高磊 朱金山[1,2,3] HU Peng;ZHAO Lu-lu;GAO Lei;ZHU Jin-shan(Geomatics College,Shandong University of Science and Technology,Qingdao 266590,China;State Key Laboratory of Geographic Information Engineering,Xi’an 710054,China;Key Laboratory of Marine Mapping Technology,Ministry of Natural Resources,Qingdao 266590,China)
机构地区:[1]山东科技大学测绘科学与工程学院,山东青岛266590 [2]地理信息工程国家重点实验室,陕西西安710054 [3]自然资源部海洋测绘技术重点实验室,山东青岛266590
出 处:《海洋科学》2021年第4期83-89,共7页Marine Sciences
基 金:地理信息工程国家重点实验室开放研究基金资助项目(SKLGIE2017-Z-3-3);国家重点研发计划课题(协作)-极区海域水声环境观测与声场特性研究(2018YFC1405903);测绘地理信息公益性行业科研专项(201512034)。
摘 要:在多光谱遥感浅海水深反演过程中,考虑到水体和底质影响,水深值和海水表面辐射亮度之间的线性关系不成立。本文以甘泉岛南部0~25m范围的沙质区域为研究区域,利用GeoEye-1多光谱遥感影像和多波束实测水深数据构建XGBoost非线性水深反演模型,研究了XGBoost算法用于水深反演的性能。以决定系数(R^(2)),均方误差(MSE)和平均绝对误差(MAE)作为评价指标,并与3种传统线性回归模型进行了对比分析。结果表明,XGBoost非线性水深反演模型的R~2、MSE和MAE分别为0.991、0.33m和0.44m,拟合程度最好,精度优于线性回归模型。为进一步探究各模型在不同水深的反演精度,将水深范围分成3段(0~8 m,8~15 m,15~25 m)分别进行精度验证和误差分析。结果表明,XGBoost模型在各分段的精度均优于线性回归模型,MSE依次为0.56 m,0.14 m和0.43 m。可见,在单一底质区域下XGBoost模型的水深反演精度更高,且反演效果更稳定。In optical shallow water bathymetry retrieval,due to the influence of the water and sediment types,the relationship between the water depth and sea surface reflectance is nonlinear.In this study,we built a nonlinear depth inversion model that uses the XGBoost algorithm.The research area was a 0–25 m sandy area around Ganquan Island in the South China Sea.GeoEye-1 multispectral data and in-situ multibeam data were used to investigate the depth inversion performance of the XGBoost algorithm.To evaluate the retrieved bathymetry results,we calculated the correlation coefficient(R^(2)),mean square error(MSE),and mean absolute error(MAE)values.We then compared the XGBoost bathymetry results with those of three linear regression models,and found the XGBoost nonlinear depth inversion model to have the best fitting performance and better precision,with R2,MSE and MAE values of 0.991,0.33,and 0.44 m,respectively.To further explore the performance of each model at different depths,we divided the water depth into three ranges(0–8 m,8–15 m,15–25 m).The results show that,in each depth range,the XGBoost model’s accuracy was better than those of the linear regression models.The MSE values in each depth range are 0.56,0.14,and 0.43 m,respectively.Based on these results,we can conclude that,compared to other models,the depth inversion accuracy of the XGBoost model is higher,and its inversion effect is more stable in a single sediment region.
关 键 词:光学浅海水深反演 XGBoost算法 非线性回归模型 底质类型
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222