基于自适应MCMC采样的新型UPFNN铝电解能耗模型  

The modeling based on AMCMC-UPFNN for aluminum electrolysis energy consumption

在线阅读下载全文

作  者:丁伟[1] 姚立忠 龙伟[1] 李炎炎[1] DING Wei;YAO Li-Zhong;LONG Wei;LI Yan-Yan(School of Mechanical Engineering,Sichuan University,Chengdu 610065,China;School of Electrical Engineering,Chongqing University of Science&Technology,Chongqing 401331,China)

机构地区:[1]四川大学机械工程学院,成都610065 [2]重庆科技学院电气工程学院,重庆401331

出  处:《四川大学学报(自然科学版)》2021年第3期98-104,共7页Journal of Sichuan University(Natural Science Edition)

基  金:国家自然科学基金(51805059);重庆市基础研究与前沿探索项目(cstc2018jcyjAX0350)。

摘  要:针对铝电解过程中噪声密集、分布类型未知且参数特征高维而导致建模精度不佳的问题,提出一种基于自适应MCMC采样的新型无迹粒子滤波神经网络(AMCMC-UPFNN)建模方法.该方法首先利用无迹变换(UT)中κ参数的平方项代替UPFNN算法中对应的常规项,避免因维数过高而导致UT矩阵出现非正定情况,保证UPFNN中Sigma点采样的合理性;然后,在传统MCMC方法基础上引入自适应采样策略来保持粒子的多样性,使所建立概率密度分布更接近真实分布;最后,与相关建模方法开展铝电解工业应用验证实验.结果表明,AMCMC-UPFNN模型预测精度的相对误差百分比不超过1%,取得了比PFNN、UPFNN和MCMC-UPFNN更优的性能指标.The accuracy of the energy consumption models for aluminum electrolysis is poor due to the intensive noise, unknown distribution types and high-dimensional parameter characteristics in the aluminum electrolysis process. In order to solve the problem, a novel modeling method based on Adaptive Markov Chain Monte Carlo Unscented Particle Filter Neural Network (AMCMC-UPFNN) is proposed. This method firstly used the square term of the κ parameter in the Unscented Transformation (UT) to replace the corresponding regular term in the UPFNN algorithm, avoiding the non-positive definite situation of the UT matrix due to high dimension, and ensuring the reasonableness of Sigma point sampling in UPFNN;then, an adaptive sampling strategy was introduced on the basis of the traditional MCMC method to maintain the diversity of particles and make the established probability density distribution closer to the true distribution. Finally, the verification experiment of aluminum electrolysis industrial application was carried out to compare the proposed method with related modeling methods. The results show that the relative error rate of the AMCMC-UPFNN model does not exceed 1%, and it has achieved better performance indicators than PFNN, UPFNN and MCMC-UPFNN.

关 键 词:马尔科夫链蒙特卡洛 无迹粒子滤波 铝电解 神经网络 能耗建模 

分 类 号:N945.12[自然科学总论—系统科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象