检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:关欣然 陈强[2] 舒大禹[2] 曹国剑[1] 曲寿江[3] 崔国荣[4] Guan Xinran;Chen Qiang;Shu Dayu;Cao Guojian;Qu Shoujiang;Cui Guorong(School of Materials Science and Technology,Harbin University of Science and Technology,Harbin 150040,China;No.59 Institute of China Ordnance Industry,Chongqing 400039,China;School of Materials Science and Technology,Tongji University,Shanghai 201804,China;School of Materials Science and Engineering y Harbin Institute of Technology at Weihai,Weihai 264209,China)
机构地区:[1]哈尔滨理工大学材料科学与工程学院,黑龙江哈尔滨150040 [2]中国兵器工业第五九研究所,重庆400039 [3]同济大学材料科学与工程学院,上海201804 [4]哈尔滨工业大学(威海)材料科学与工程学院,山东威海264209
出 处:《稀有金属》2021年第3期341-352,共12页Chinese Journal of Rare Metals
基 金:国家自然科学基金项目(50961008,51061008)资助。
摘 要:综述了Ta-W合金在冲击载荷作用下的动态力学响应、常用研究方法及亚结构转变。其中Ta-W合金在高应变速率下常见的亚结构转变包括:冲击诱导相变、绝热剪切带中发生的动态回复及动态再结晶,以及高应变速率下的形变孪生。Ta-W合金在高应变速率下发生冲击诱导相变是合金内部位错组态与位错密度共同作用的结果,且通过实验数据与数学模拟证明了相变的发生与冲击载荷作用下存在的剪切应力密切相关;Ta-W合金绝热剪切带内的绝热升温不足,且没有足够时间通过位错的湮灭完成晶界的细化,因此仅发生动态回复作用。然而限于仪器精度条件,有关绝热剪切带形成机理及内部的亚结构转变亟待澄清;Ta-W合金高应变速率下孪生形成与孪生临界形成应力、位错组态及位错密度密切相关,计算证明孪生对于总应变量贡献较低,位错组态与位错密度在高应变速率下形变孪生中的作用机理亟待阐明。Ta-W alloy had been gradually developed as a penetrating weapon material due to its high density,high melting point and excellent high temperature strength. The high-speed penetration of the projectile was accompanied by the transformation of the internal substructure of the material. Compared with the static loading,the high strain rate loading process involved strain,strain rate,inertia,heating,and even secondary effects such as sound,light,and electricity. The penetration process was very short,so the analysis and processing were more complicated. In the process of dynamic loading,some substructure transformations in the material were often destructive. For example,the appearance of dynamic recrystallization(DRX)might become a potential factor of adiabatic shearing phenomenon,but at the same time,the generation of twins and stress-induced martensite in titanium alloys has been experimentally proved to effectively slow down the expansion of the shear band and caused the bifurcation of the shear band. Therefore,studying the substructure transformation and mechanism of Ta-W alloy at high strain rate was of great significance to improve the penetration performance of the projectile and to better apply the material to service at high strain rate. In the study of Ta-W alloy dynamic mechanics,the split Hopkinson pressure bar(SHPB)was widely used because of its higher strain rate and reliability compared with the thickwalled cylinder implosion test(TWC)and Taylor impact test. According to the geometry of the sample,it could be divided into dynamic compression experiment of cylindrical sample,dynamic compression experiment of hat-shaped sample and dynamic compression experiment of shear compression specimens(SCS). Different loading conditions could be achieved by controlling the geometric size of the sample,which had a very obvious influence on the damage of the sample and the generation and expansion of the shear band. In the characterization of the microstructure inside the Ta-W alloy after dynamic loading,the scanni
关 键 词:TA-W合金 冲击诱导相变 动态再结晶 动态回复 形变孪晶
分 类 号:TG146.416[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63