Quasi-periodic solutions for the general semilinear Duffing equations with asymmetric nonlinearity and oscillating potential  

在线阅读下载全文

作  者:Xinli Zhang Yaqun Peng Daxiong Piao 

机构地区:[1]School of Mathematical Sciences,Ocean University of China,Qingdao 266100,China [2]School of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,China

出  处:《Science China Mathematics》2021年第5期931-946,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No.11571327)。

摘  要:In this paper,we prove the existence of quasi-periodic solutions and the boundedness of all the solutions of the general semilinear quasi-periodic differential equation x′′+ax^(+)-bx^(-)=G_x(x,t)+f (t),where x^(+)=max{x,0},x^(-)=max{-x,0},a and b are two different positive constants,f(t) is C^(39) smooth in t,G(x,t)is C^(35) smooth in x and t,f (t) and G(x,t) are quasi-periodic in t with the Diophantine frequency ω=(ω_(1),ω_(2)),and D_(x)^(i)D_(t)^(j)G(x,t) is bounded for 0≤i+j≤35.

关 键 词:quasi-periodic solutions asymmetric oscillator Littlewood's boundedness problem invariant curves 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象