基于遗传算法优化BP神经网络的管网漏失定位模型研究  被引量:9

Study on Leakage Location Model of Water Supply Network Based on BP Neural Network Optimized by Genetic Algorithm

在线阅读下载全文

作  者:冉雨晴 吴玮[1] 狄鑫 RAN Yu-qing;WU Wei;DI Xin(School of Environmental Science and Engineering,Suzhou University of Science and Technology,Suzhou 215009,China;Wuxi Municipal Design Institute,Wuxi 214072,China)

机构地区:[1]苏州科技大学环境科学与工程学院,江苏苏州215009 [2]无锡市政设计研究院有限公司,江苏无锡214072

出  处:《水电能源科学》2021年第5期123-126,122,共5页Water Resources and Power

基  金:水体污染控制与治理科技重大专项(2017ZX07201001)。

摘  要:针对BP神经网络用于管网漏失定位时易出现收敛速度慢及陷入局部极小值的问题,利用遗传算法对BP神经网络的权值和阈值进行优化,并以A市供水管网为例,选取各个分区的供水管段进行不同程度的漏失模拟,将模拟数据作为训练样本训练遗传算法优化的BP神经网络,得到管网漏失时压力监测点的压力变化率和漏点位置之间的非线性关系,构建基于遗传算法优化BP神经网络的管网漏失定位模型。实例应用结果表明,基于遗传算法优化BP神经网络的管网漏失定位模型的收敛速度和预测精度均优于传统BP神经网络模型,可应用于实际工程。When the back propagation(BP)neural network is used for the leakage location of water supply network,it was easy to slow down the convergence and fall into the local minimum.To solve this problem,genetic algorithm was used to optimize the weight and threshold of the BP neural network.The water supply pipelines of each district in city A was selected to perform leakage simulations with different degrees.The BP neural network optimized by genetic algorithm was trained with the simulation data.Then the nonlinear relationship between the pressure change rate of pressure monitoring points and the location of leakage points was established,and a leakage location model of water supply network based on BP neural network optimized by genetic algorithm was constructed.The example results show that the optimized leakage location model is superior to the traditional BP neural network model in convergence rate and prediction accuracy,and it is better to use in water supply network.

关 键 词:给水管网 BP神经网络 遗传算法 漏失定位 压力监测点 

分 类 号:TU991[建筑科学—市政工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象