检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:沈先春 徐亮[1,3] 孙永丰 胡运优 金岭 杨伟锋[1,3] 徐寒扬 刘建国 刘文清 SHEN Xianchun;XU Liang;SUN Yongfeng;HU Yunyou;JIN Ling;YANG Weifeng;XU Hangyang;LIU Jianguo;LIU Wenqing(Key Laboratory of Environmental Optics and Technology,Anhui Institute of Optics and Fine Mechanics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China;University of Science and Technology of China,Hefei 230026,China;Key Laboratory of Optical Monitoring Technology for Environment,Hefei 230031,China)
机构地区:[1]中国科学院合肥物质科学研究院安徽光学精密机械研究所环境光学与技术重点实验室,安徽合肥230031 [2]中国科学技术大学,安徽合肥230026 [3]安徽省环境光学监测技术重点实验室,安徽合肥230031
出 处:《量子电子学报》2021年第3期281-289,共9页Chinese Journal of Quantum Electronics
基 金:中国科学院前沿科学重点研究项目,QYZDYSSW-DQC016;安徽省重点研究和开发计划,1804d08020300;国家自然科学基金专项项目,41941011;国家重点研发计划,2016YFC0803001-08。
摘 要:将变量选择方法中SFS、LASSO和Elastic Net三种不同方法与广义交互验证准则相结合,实现对FTIR光谱气体成分变量的初步筛选,再采用循环迭代CLS方法对初步筛选的变量中浓度小于0的成分进行循环剔除,然后根据变量在测量向量中的方向占比对选择的变量进行精选,最终得到目标气体成分。为了验证各识别算法的识别性能,分别进行了CH_4和SF_6外场排放实验,两组实验结果表明建立的识别算法应用于气体目标识别的效率高、识别准确率高,且能够识别出干扰成分H_2O。此算法为被动FTIR技术在危险气体泄露预警监测中的应用提供了方法基础。Qualitative spectrum recognition algorithm is the basis of application of passive Fourier transform infrared spectroscopy(FTIR)in monitoring and early warning of toxic and hazardous gases.Three different methods,SFS,LASSO and Elastic Net,are used to perform preliminary selection of gas component variables in the FTIR spectrum by combining with the generalized cross-validation criteria.Then,the cyclic iterative CLS method is used to perform cyclic elimination of the components with concentration less than 0 in the preliminary screened variables.Finally,the direction proportion of the variables in the measurement vector is used to further select from the selected variables to get the target gas composition.In order to verify the performance of each recognition algorithm,the simulation experiments of CH4 and SF6 field emission are carried out respectively.The experimental results show that the established recognition algorithm can identify the target components quickly and effectively,the recognition response time is second level,the recognition accuracy is as high as 99%,and it can also accurately identify the interference component H2O.It is shown that the proposed algorithm provides a method basis for the application of passive FTIR technology in emergency monitoring and warning of dangerous gas leakage.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.134.110.4