检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐屾 朱红阳 张莉君[3] 岳亚楠[4] 王信伟[2] Xu Shen;Zhu Hongyang;Zhang Lijun;Yue Yanan;Wang Xinwei(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China;Department of Mechanical Engineering,Iowa State University,Iowa 50011,USA;College of Engineering Science and Technology,Shanghai Ocean University,Shanghai 201306,China;School of Power and Mechanical Engineering,Wuhan University,Wuhan,Hubei 430072,China)
机构地区:[1]上海工程技术大学机械与汽车工程学院,上海201620 [2]美国爱荷华州立大学机械工程系,美国爱荷华州50011 [3]上海海洋大学工程学院,上海201306 [4]武汉大学动力与机械学院,湖北武汉430072
出 处:《中国激光》2021年第6期1-18,共18页Chinese Journal of Lasers
基 金:国家自然科学基金(51576145);国家留学基金(201908310026);上海市青年东方学者人才计划;美国自然科学基金(CBET1930866,CMMI2032464)。
摘 要:激光辅助近场纳米制造是利用近场聚焦激光束突破衍射极限对材料进行加工,使其发生纳米域内的相变或爆炸,从而制造纳米级材料和复杂结构的技术。基于探针的激光辅助近场制造技术是激光辅助近场纳米制造的一大分支。加工域内原位光场、温升、应力以及材料结构演变是纳米加工动态过程中的重要信息,有助于深入理解纳米加工过程多物理场相互作用的物理机制,以及进一步优化加工过程控制。本文主要综述了基于扫描探针显微镜探针针尖的激光辅助近场纳米加工中光场、温度场、应力场探测的实验和结构演变的理论计算工作。Significance Laser-assisted near-field nanomanufacturing uses a near-field focused laser beam to break down the diffraction limit and heat materials to induce phase change or phase explosion to fabricate nanoscale materials and complex structures.It has an outstanding feature in both academic and industrial fields due to its highly coherent features,including continuously adjustable incident laser power,highly controllable processing position,and accessible to nanodomains.Among various near-field technologies,the tip-based near-field technique utilizes the tiny but sharp geometry of scanning probe microscope(SPM)tips to focus the incident optical field into an extremely small area in proximity to the tip apex.The highly enhanced electromagnetic field generates huge but localized heat in the surface to be manufactured and modifies its morphology through photon absorption and consequent phase change at the nanoscale.Progress In the processing domain,in-situ information about the optical field,temperature rise,stress,and material structure evolution is critical for understanding and refining nanomanufacturing.It is helpful for in-depth understanding of the physical mechanism of multiphysics interaction and further optimization and process control.The enhanced electromagnetic field in and around SPM tips has been fully studied in recent decades;however,a knowledge gap remains relative to temperature rise and thermal stress evolution in the same region.A high-fidelity simulation on atomic force microscopy(AFM)tungsten tip under laser irradiation demonstrated that the electric field was primarily concentrated at the apex outside the tip rather than inside(Fig.1).The geometry and irradiating position on the tip were found to be important factors affecting the temperature rise of the tip.A systematic experiment measuring the temperature of the tip revealed that the temperature rise was a trade-off between the absorption area size and heat conduction to the base of the AFM tip(Fig.2).In addition to temperature rise in the
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.180.237