检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄振明[1] HUANG Zhenming(Department of Mathematics and Physics,Suzhou Vocational University,Suzhou,Jiangsu 215104,China)
出 处:《湖南城市学院学报(自然科学版)》2021年第3期50-55,共6页Journal of Hunan City University:Natural Science
摘 要:在四阶椭圆型算子组谱的研究基础上,对高阶椭圆型算子组的广义低阶谱进行分析;依据微分算子谱理论,采用分部积分法、数学归纳法、测试函数法等技巧,获得了其估计式的主次谱间隙和两者之比的2个不等式.结果表明,随着空间维数的增加,主次谱间隙越来越小,该结论是已有文献结论的进一步推广.Based on the study of the spectrum of fourth-order elliptic operators,the generalized lower-order spectra of higher-order elliptic operators are analyzed.According to the spectrum theory of differential operator,two inequalities of the primary and secondary spectral gap and the ratio of the two are obtained by using the techniques of partial integration,mathematical induction and test function.The results show that with the increase of space dimension,the primary and secondary spectral gap becomes smaller and smaller,which is a further extension of the existing literature.
关 键 词:椭圆型算子组 低阶谱 Rayleigh-Ritz不等式 间隙估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49