基于自适应多点法的sCMOS实时非均匀性校正  被引量:4

sCMOS real-time nonuniformity correction based on adaptive multipoint method

在线阅读下载全文

作  者:张涛 李新阳[1] 李剑峰[2] 徐稚 Zhang Tao;Li Xinyang;Li Jianfeng;Xu Zhi(Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;School of Optoelectronics Science and Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 610054,China;Yunnan Observatory,Chinese Academy of Sciences,Kunming,Yunnan 650216,China)

机构地区:[1]中国科学院光电技术研究所,四川成都610209 [2]电子科技大学光电科学与工程学院,四川成都610054 [3]中国科学院云南天文台,云南昆明650216

出  处:《光电工程》2021年第5期83-90,共8页Opto-Electronic Engineering

基  金:国家自然科学基金资助项目(11573066);云南省基础研究计划(2019FA001)。

摘  要:为改善sCMOS读出电路工艺偏差导致的非均匀性问题,本文提出了自适应多点非均匀性校正方法。算法首先以搜寻最小范数点、阈值比较的方式分别确定最优分段点的位置以及最佳分段数量,然后再根据这些分段信息在各区间段分别进行两点校正。通过该自适应方法可有效改善传统多点法中由于分段参数选择不当导致的校正性能下降。同时,为实现实时的非均匀性校正,文中根据自适应多点法的算法特点,提出了一种与之匹配的嵌入式数据串流校正方案,可在不影响现有相机采集结构以及采集速率的情况下实现非均匀性的校正。In order to improve the nonuniformity caused by the process bias of sCMOS readout circuit,an adaptive multipoint nonuniformity correction method is presented.The algorithm first determines the location of the optimal segment point and the optimal number of segments by searching for the minimum norm point and threshold comparison,then corrects two points in each interval segment according to the segment information.This adaptive method can effectively improve the correction performance of traditional multipoint methods,which is caused by improper selection of segment parameters.At the same time,in order to achieve real-time non-uniformity correction,a matching embedded data series correction scheme is proposed based on the algorithm characteristics of adaptive multipoint method,which can achieve non-uniformity correction without affecting the existing camera acquisition structure and acquisition rate.

关 键 词:非均匀性 多点法 自适应 实时处理 

分 类 号:TN36[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象