检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:康月 薛惠珍 华斌[1] KANG Yue;XUE Huizhen;HUA Bin(School of Science and Technology,Tianjin University of Finance&Economics,Tianjin 300222,China)
出 处:《计算机工程与应用》2021年第11期140-147,共8页Computer Engineering and Applications
基 金:天津市自然科学基金(18JCYBJC85100);教育部人文社会科学研究项目规划项目(19YJA630046)。
摘 要:利用BERT预训练模型的优势,将句法特征与BERT词嵌入模型融入到深度学习网络中,实现细粒度的商品评价分析。提出一种基于深度学习的两阶段细粒度商品评价情感分析模型,利用融合句法特征与BERT词嵌入的BILSTM-CRF注意力机制模型提取用户评论中的商品实体、属性与情感词;运用BILSTM模型对提取的结果进行情感分析。在SemEval-2016 Task 5和COAE Task3商品评价数据集上的特征提取F1值达到88.2%,分别高出BILSTM模型、BILSTM-CRF模型4.8个百分点、2.3个百分点;情感分类精度达到88.5%,比普通的RNN高出8个百分点,比支持向量机、朴素贝叶斯等传统机器学习方法高出15个百分点。通过模型的复杂度分析,进一步证明融合句法特征与BERT词嵌入后的深度学习模型,在细粒度商品评价情感分析上的优势。Syntactic features and BERT word embedding model is integrated into the deep learning network to achieve the fine-grained commodity evaluation analysis by taking advantage of the BERT pre-training model.A two-stage finegrained commodity evaluation sentiment analysis model based on deep learning is proposed.Firstly,the BILSTM-CRF attention mechanism model which combines syntactic features and BERT word embedding is used to extract commodity entities,attributes,and emotional words in user reviews.Then,the BILSTM model is applied to analyze the sentiment of the extracted results.The F1 value of feature extraction on SemEval-2016 Task 5 and COAE Task3 commodity evaluation dataset reaches 88.2%,which is 4.8 percentage points and 2.3 percentage points higher than that of the BILSTM model and BILSTM-CRF model,respectively.The accuracy of sentiment classification is up to 88.5%,which is 8 percentage points higher than ordinary RNN,and 15 percentage points higher than traditional machine learning methods,such as support vector machine and naive Bayes.To corroborate the deep learning model which integrates syntactic features and BERT word embedding is superior in the sentiment analysis of fine-grained commodity evaluation by analyzing the complexity of the model.
关 键 词:情感分析 深度学习 BILSTM-CRF模型 BERT 注意力机制
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.124.64