湖南省气温对新型冠状病毒肺炎发病数的滞后影响  被引量:1

Lag effect of temperature on the incidence of COVID-19 in Hunan Province

在线阅读下载全文

作  者:毛倩 刘玉洁 王喆 管佩霞 肖宇飞 朱高培 孟维静[2] 王素珍[1] 石福艳[1] MAO Qian;LIU Yu-jie;WANG Zhe;GUAN Pei-xia;XIAO Yu-fei;ZHU Gao-pei;MENG Wei-jing;WANG Su-zhen;SHI Fu-yan(Department of Health Statistics,School of Public Health,Weifang Medical University,Weifang 261053,China;Student Affairs Office,School of Life Science and Technology,Weifang Medical University,Weifang 261053,China)

机构地区:[1]潍坊医学院公共卫生学院卫生统计学系,潍坊261053 [2]潍坊医学院生命科学与技术学院学生工作办公室,潍坊261053

出  处:《中华疾病控制杂志》2021年第4期405-410,共6页Chinese Journal of Disease Control & Prevention

基  金:国家自然科学基金(81803337,81872719);国家统计局课题(2018LY79);山东省自然科学基金(ZR2019MH034);山东省高等学校青创人才引育计划(2019-6-156,Lu-Jiao);潍坊医学院博士启动基金(2017BSQD51)。

摘  要:目的研究湖南省日均气温对COVID-19日发病数的滞后影响,为疫情的有效防控提供科学依据。方法本研究对2020年1月21日―2020年3月2日湖南省气象因素和空气质量因素与COVID-19日发病数进行Spearman相关分析和分布滞后非线性模型分析。结果观察期间,湖南省新型冠状病毒肺炎报告新发病例共1018例。分布滞后非线性模型结果显示,日均气温与COVID-19日发病数的关系呈非线性,累积发病风险随气温的升高而降低,且发病人群的气温风险最低点为0℃。高温对日发病数的影响为短期即时效应,低温对每日发病人数的影响具有滞后性,滞后效应长达12 d,当日均温为-5℃,滞后天数为8 d时,相对危险度最高(RR=2.20,95%CI=1.16~4.19),且高温(10℃)较低温(6℃)影响更为显著。结论气温是影响湖南省COVID-19发病的因素,且有滞后性;高温和低温均可导致发病风险升高,应针对脆弱人群和危重患者加强防护措施从而降低发病风险。Objective To explore the lag effect of daily average temperature on the incidence of coronavirus disease 2019(COVID-19)in Hunan Province and to provide scientific evidences for effective prevention of COVID-19.Methods The meteorological factors,the air quality factors and the data conincidence of COVID-19 reported in Hunan Province during January 21,2020 to March 2,2020 were collected.Spearman correlation and distributed lag non-linear model analysis were performed.Results A total of 1018 COVID-19 cases were reported in Hunan Province.The distribution lag non-linear model results showed that the influence of daily average temperature on the incidence of COVID-19 presented a nonlinear relationship.The cumulative relative incidence risk of COVID-19 decreased with the increase of daily average temperature,and the lowest temperature risk of the patients was 0℃.Both cold temperature and hot temperature increased incidence risk of COVID-19.It was indicated that the hot effects were immediate,however,the cold effects with obvious lag effect persisted up to 12 days.The highest relative risk of COVID-19 incidence was associated with lag 8-day daily average temperature of-5℃(RR=2.20,95%CI=1.16-4.19).The influence of high temperature(10℃)was more significant than that of low temperature(6℃).Conclusion The daily average temperature,especially cold or hot temperature,was an important influencing factor of the incidence of COVID-19 in Hunan Province,which had lag influence on the incidence of COVID-19.We suggested that some related preventive measures should be adopted to protect vulnerable population and severe patients to reduce the incidence risk.

关 键 词:分布滞后非线性模型 日均气温 日发病数 COVID-19 

分 类 号:R183.3[医药卫生—流行病学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象