检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李张铮 陈锋[1] 董帝烺 Li Zhangzheng;Chen Feng;Dong Dilang(China Unicom Fujian Branch,Fuzhou 350000,China)
出 处:《邮电设计技术》2021年第5期65-71,共7页Designing Techniques of Posts and Telecommunications
摘 要:针对现有邻区优化方式的不足,基于现网数据引入XGBoost机器学习回归预测算法,通过学习具有自动邻区关系网络的两两小区切换占比建立预测模型,优化非自动邻区关系网络小区邻区关系。研究结果表明,基于AI算法的无线网络邻区关系优化能有效提高邻区优化效率,提升邻区关系的准确性。Neighborhood optimization is an indispensable and complex part of wireless network optimization,and traditional artificial optimization is a heavy burden on the operation of the operator's huge wireless base station.In view of the deficiency of the existing neighborhood optimization method,according to the existing network data,XGBoost machine learning regression prediction algorithm is introduced,and the neighborhood relationship of non-automatic neighborhood relationship network is optimized by learning the two-cell handover ratio of automatic neighborhood relationship network to establish the prediction model.The results show that the optimization of wireless network neighborhood based on AI algorithm can effectively improve the efficiency of neighborhood relationship optimization and improve the accuracy of neighborhood relationship.
关 键 词:XGBoost算法 小区切换占比预测 邻区优化 网络优化
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7