检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈翔[1] 黄璐[1] 倪兴兴 刘家润 曹晓丽 王长天 Chen Xiang;Huang Lu;Ni Xingxing;Liu Jiarun;Cao Xiaoli;Wang Changtian(School of Management and Economics,Beijing Institute of Technology,Beijing 100081)
机构地区:[1]北京理工大学管理与经济学院,北京100081
出 处:《情报学报》2021年第5期500-512,共13页Journal of the China Society for Scientific and Technical Information
基 金:国家自然科学基金面上项目“基于复杂网络的全球创新研发主体组合识别与评估方法研究”(71774013)。
摘 要:当前,学科演变更替加速,交叉融合态势加剧,如何快速准确地识别领域的研究主题、理清领域的发展脉络、追踪主题的演化路径及动向,进而把握领域的研究前沿,成为科研工作者亟待解决的关键问题。本文提出了一套基于动态网络的主题演化路径识别方法,首先通过引入分段线性表示法和Word2Vec模型构建动态关键词语义网络,之后利用社区发现算法识别动态网络中的社区,并通过度量相邻时间段间的主题相似性来表现主题间的演化关系,最终识别主题的演化路径。本文以信息科学领域为例开展实证分析,在方法验证部分,本文对比了分段线性表示法与平均时间划分法的分析结果,同时,还将本方法与K-means和LDA两大方法在主题识别中的效果进行了比较。本研究能为科研工作者以及战略决策者开展前瞻性科研活动提供重要的决策支持。With the rapid development of science and technology,several disciplines have shown accelerating changes and intensified cross-fusion.In this context,an important problem researchers face is how research topics can be quickly and accurately identified,evolutionary pathways and trends can be tracked,and research frontiers can be subsequently comprehended.This paper therefore proposes a method for the identification of topic evolutionary pathways based on a dynamic network.First,the dynamic keyword network is constructed via introduction of the piecewise linear representation and the Word2Vec model.Second,a community discovery algorithm is used to identify the communities in the dynamic network,and the evolutionary relationship among topics is represented via measurements of the topic similarity between adjacent time intervals.Finally,the topic evolutionary pathway is identified.This study involves empirical analyses in information science.For validation of the methodology,the results obtained via using the piecewise linear representation method are compared with those obtained via the average time-division method and also with the effect of our method with K-means and LDA in topic identification.This study can therefore provide important decision support for researchers and strategic decision-makers to perform research activities aimed at progressing in the field of study.
关 键 词:主题演化路径 动态网络分析 分段线性表示法 Word2Vec
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157