基于NBIOT技术的区域水质信息采集及监测系统设计  被引量:7

Design of regional water quality information collection and monitoring system based on NBIOT technology

在线阅读下载全文

作  者:廖威[1] LIAO Wei(Guangxi Vocational college Water Resources and Electric Power,Guangxi Nanning 530023,China)

机构地区:[1]广西水利电力职业技术学院,南宁530023

出  处:《自动化与仪器仪表》2021年第5期113-116,120,共5页Automation & Instrumentation

基  金:基于物联网ZigBee无线网络智慧农业控制系统的研究:广西壮族自治区教育厅自然科学类项目资金(No.2020KY33012)。

摘  要:为了提高区域水质信息采集及监测的稳定性和准确性,提出基于NBIOT技术的区域水质信息采集及监测系统设计方法。首先构建区域水质信息采集及监测的传感器部署结构模型,并在此基础上,对系统总体结构进行优化设计。然后采用NBIOT技术实现对区域水质信息采集及监测的物联网信息融合,结合NBIOT技术得到区域水质的信息融合模型,提高了信息监测系统的信息采集能力。最后根据随机分布指标对监测指标进行优化设计,从而实现区域水质信息采集及监测系统的优化。实验结果表明:所提出的区域水质信息采集及监测系统具有较高的稳定性,且水质信息检测结果更可靠。In order to improve the stability and accuracy of regional water quality information collection and monitoring, a design method of regional water quality information collection and monitoring system based on NBIOT technology is proposed.First, build a sensor deployment structure model for regional water quality information collection and monitoring, and on this basis, optimize the overall structure of the system.Then the NBIOT technology is used to realize the Internet of Things information fusion for regional water quality information collection and monitoring, and the NBIOT technology is combined to obtain the regional water quality information fusion model, which improves the information collection capability of the information monitoring system.Finally, the monitoring index is optimized according to the random distribution index, so as to realize the optimization of the regional water quality information collection and monitoring system.The experimental results show that the proposed regional water quality information collection and monitoring system has higher stability, and the water quality information detection results are more reliable.

关 键 词:NBIOT技术 区域水质信息 信息采集 监测系统 

分 类 号:TV212[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象