检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:程林 江翼[1,2] 高杨德 鲁方林[3] CHENG Lin;JIANG Yi;GAO Yang-de;LU Fang-lin(NARI Group Corporation y State Grid Electric Power Research Institute,Nanjing 210061,China)
机构地区:[1]南瑞集团(国网电力科学研究院)有限公司,江苏南京211006 [2]国网电力科学研究院武汉南瑞有限责任公司,湖北武汉430074 [3]中国科学院上海高等研究院,上海201210
出 处:《电力电子技术》2021年第5期66-68,共3页Power Electronics
基 金:国家电网有限公司科技项目(SGFJDK00PJJS1800018)。
摘 要:由于变电设备智能组件在复杂高压的环境中运行,易发生火灾等安全事故,因此为了对变电设备智能组件进行安全监测,提出基于自适应阈值小波的图像边缘检测算法对变电设备智能组件发生火灾时进行图像去噪和火灾轮廓特征提取,有效提高火灾报警性能。首先建立多目视觉传感器对变电设备现场进行图像采集,然后对采集的图像首先经过Rgb2gray颜色转换,然后通过融合自适应阈值小波滤波,消除冗余障碍物信息干扰,最后通过改进的边缘检测Boundaries算法对火灾二值图边缘轮廓进行检测。实验表明建立的自适应阈值小波的图像边缘检测算法可以提高火灾图像去噪性能和火灾边缘轮廓检测的效果。Because intelligent components of substation equipment operate in a complex high-voltage operating environment,they are prone to safety accidents such as fire.For the safety monitoring of substation equipment intelligent components,an image edge detection algorithm based on adaptive threshold wavelet is proposed to carry out image denoising and fire contour feature extraction in case of fire of substation equipment intelligent components.First,heterogeneous multi-vision sensors collect pictures on the scene of the substation equipment,then the collected images are first subjected to Rgb2 gray color conversion,and then the adaptive threshold wavelet filter is integrated to eliminate redundant information interference.Finally,the improved boundary detection Boundaries algorithm is used to detect the boundary contour of the binary fire map.Experiments show that the established edge image detection algorithm of adaptive threshold wavelet can improve the performance of fire image denoising and fire edge contour detection.
分 类 号:U244[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7