地理格网模型支持下的轨迹数据管理与分析框架:方法与应用  被引量:2

Trajectory Data Management and Analysis Framework Based on Geographical Grid Model:Method and Application

在线阅读下载全文

作  者:李军[1] 刘举庆 赵学胜[1] 黄骞 孙文彬[1] 许志华 王昊[2] LI Jun;LIU Juqing;ZHAO Xuesheng;HUANG Qian;SUN Wenbin;XU Zhihua;WANG Hao(College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China;Service Laboratory,Huawei Technology Co.Ltd,Beijing 100095,China)

机构地区:[1]中国矿业大学(北京)地球科学与测绘工程学院,北京100083 [2]华为技术有限公司服务实验室,北京100095

出  处:《武汉大学学报(信息科学版)》2021年第5期640-649,共10页Geomatics and Information Science of Wuhan University

基  金:国家自然科学基金(41971355);中国矿业大学(北京)越崎青年学者资助计划。

摘  要:近年来,各类位置感知设备产生的轨迹数据被广泛应用于城市规划、智能交通、公共卫生、行为分析等各个领域,但是常规矢量表达方式及建立在其基础之上的分析算法的计算复杂度高,无法满足大规模轨迹数据的高时效性应用需求。针对上述问题,提出了基于地理格网模型的轨迹数据管理与分析框架,为轨迹数据挖掘的"表达-管理-分析-应用"全链条研究提供新的技术框架,主要包含地理格网模型、轨迹多尺度表达与组织、轨迹计算与分析、高性能计算技术、轨迹挖掘应用5部分。介绍了各部分的实现思路和方法,并阐述了格网模型与轨迹数据结合的优势,包括存储管理高效灵活、适合高性能计算技术和契合自动控制与智能计算需求等。以城市交通流多层级实时可视化和基于地理格网编码的相似性分析两个应用实例验证了该技术框架理论与技术方法的可靠性和有效性。Objectives: In recent years, trajectory data generated by various location-aware devices have been widely used in a host of fields such as urban planning, intelligent transportation, public health, and behavior analysis, and have produced huge social and economic value. However, the conventional vector representation model and the analysis algorithms based on it have high computational complexity and cannot meet the high time-efficient application requirements of large-scale trajectory data. To address the above problems, we propose a trajectory data management and analysis framework based on a geographical grid model, which provides a new technical framework for the entire chain of "representation-management-analysis-application" of trajectory data mining.Methods:This framework includes five parts:(1) Construction of geographical grid model. The Earth. s surface space is subdivided level by level according to some rules(e.g., quadtree, octree), and the spatiotemporal position is represented by grid coding.(2) Multiscale coding representation and organization of trajectories. The trajectory data are mapped onto different spatial resolution grid levels according to the spatial position information and precision requirements to im-plement the spatial one-dimensional multi-scale coding representation instead of multi-dimensional vector coordinates, to reduce the difficulty of organization and management on massive trajectory data.(3) Calculation and analysis of trajectories. The concept of geographical grid calculation is proposed, and the existing complex algorithms are modified by using low complexity coding operations(including intrinsic index,multi-scale, set operations, etc.) to accelerate the process of trajectory data mining analysis.(4) High-performance computing technologies. We further utilize the discreteness of geographical grid model, and combine the current parallel and distributed high-performance computing frameworks to achieve distributed storage and concurrent computing on trajectory big data.(5) A

关 键 词:轨迹管理 轨迹分析 地理格网模型 移动对象 数据挖掘 

分 类 号:P208[天文地球—地图制图学与地理信息工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象