检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qipeng GUO Xipeng QIU Xiangyang XUE Zheng ZHANG
机构地区:[1]Shanghai Key Laboratory of Intelligent Information Processing,School of Computer Science,Fudan University,Shanghai 200433,China [2]NYU Shanghai and AWS Shanghai AI Lab,Shanghai 200335,China
出 处:《Science China(Information Sciences)》2021年第5期63-72,共10页中国科学(信息科学)(英文版)
基 金:supported by National Key Research and Development Program of China(Grant No.2018YFC0831103);Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX01);Zhejiang Lab。
摘 要:Text generation is a fundamental and important task in natural language processing.Most of the existing models generate text in a sequential manner and have difficulty modeling complex dependency structures.In this paper,we treat the text generation task as a graph generation problem exploiting both syntactic and word-ordering relationships.Leveraging the framework of the graph neural network,we propose the word graph model.During the process,the model builds a sentence incrementally and maintains syntactic integrity via a syntax-driven,top-down,breadth-first generation process.Experimental results on both synthetic and real text generation tasks show the efficacy of our approach.
关 键 词:text generation deep learning graph neural network dependency parsing
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222