基于复杂网络聚类算法的酒驾违法行为查处选址研究  被引量:1

Research on Setting Chucks to Investigate Drunk Driving Violations Based on Complex Network Clustering Algorithm

在线阅读下载全文

作  者:胥文 谢长江 石臣鹏[1] XU Wen;XIE Changjiang;SHI Chenpeng(Sichuan Police College,Road Traffic Management Department,Luzhou 646000,China)

机构地区:[1]四川警察学院道路交通管理系,四川泸州646000

出  处:《中国人民公安大学学报(自然科学版)》2021年第2期34-39,共6页Journal of People’s Public Security University of China(Science and Technology)

基  金:四川省科技计划项目(2017JY0167);四川省公安厅科技计划项目(2020SCLL01)。

摘  要:酒驾违法行为一直处于高发频发的状态,如何合理选择酒驾盘查卡点以提高酒驾查处的准确性和效率成为关键性的问题。目前,大多数研究重点在酒驾与刑罚和酒驾对驾驶行为的影响等方面,针对酒驾盘查卡点的选址规划研究存在较大空白。结合公安机关交通管理部门设卡查处酒驾的特点和原则,从酒驾违法行为的基本特性出发,给出设卡查处酒驾违法行为选址的功能定位。针对重点路段中车流量大的路段,采用复杂网络聚类的方法,在考虑路段流量大小的情况下,对城市交通网络中的路段车流聚集度进行计算,辨识出网络中的关键车流聚集路段,作为酒驾查处选址的参考依据。The illegal act of drunk driving has been incident and frequent.How to reasonably select drunk driving checkpoints to improve the accuracy and efficiency of drunk driving investigations has become a key issue.Most of the current research focus on the relation between drunk driving and corresponding penalties as well as the impact of drunk driving on driving behavior.Little attention is paid to the location planning of drunk driving checkpoints.Considering the characteristics and principles of drunk driving investigation by public security traffic management department,this paper,starting from the basic characteristics of drunk driving violations,tries to resolve the functional positioning of setting chucks to investigate drunk driving violations.This research mainly focuses on the road sections with high traffic flow in the key road sections.With the complex network clustering method,it calculates the traffic concentration degree of the road section in the urban transportation network under the condition of the traffic volume of the road section.And the key road sections of traffic flow aggregation are identified.It is a vital for the location planning of the drunk driving investigation.

关 键 词:交通管理工程 卡点选址 复杂网络聚类算法 酒驾查处 

分 类 号:D631.4[政治法律—政治学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象