Surjective L^(2)-isometries on the Projection Lattice  

在线阅读下载全文

作  者:Li Guang WANG Wen Ming WU Wei YUAN 

机构地区:[1]School of Mathematical Sciences,Qufu Normal University,Qufu 273165,P.R.China [2]School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,P.R.China [3]Institute of Mathematics,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,P.R.China [4]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2021年第5期825-834,共10页数学学报(英文版)

基  金:supported in part by NFS of China(Grant Nos.11871303,11971463,11671133);supported in part by NFS of China(Grant Nos.11871127,11971463);supported in part by NFS of China(Grant Nos.11871303,11871127,11971463);NSF of Shandong Province(Grant No.ZR2019MA039);Chongqing Science and Technology Commission(Grant No.cstc2019jcyj-msxm X0256)。

摘  要:Recently,Gehér and Semrl have characterized the general form of surjective isometries of the set of all projections on an infinite-dimensional separable Hilbert space using unitaries and antiunitaries.In this paper,we study the surjective L^(2)-isometries of the projection lattice of an infinite dimensional Hilbert space and show that every such isometry can also be described by unitaries and antiunitaries.

关 键 词:Wigner's theorem L^(2)-isometries projections tracial weight 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象