检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张氢[1] 江伟哲 李恒 ZHANG Qing;JIANG Weizhe;LI Heng(School of Mechanical Engineering,Tongji University,Shanghai 201804,China)
机构地区:[1]同济大学机械与能源工程学院,上海201804
出 处:《哈尔滨工业大学学报》2021年第7期68-76,83,共10页Journal of Harbin Institute of Technology
基 金:上海市科学技术委员会科研计划项目(17DZ1204602)。
摘 要:为解决滚动轴承故障时产生的信号具有强背景噪声而导致弱周期冲击特征难提取,以及在对轴承故障模式进行智能诊断时一般的诊断模型对故障振动信号的时序特征识别效果不强这两大问题,提出一种基于最大相关峭度解卷积(MCKD)、Teager能量算子和长短期记忆网络(LSTM)的故障诊断方法。使用MCKD算法对滚动轴承振动信号进行降噪处理,提取出信号中被噪声掩盖的周期冲击特征,并利用Teager能量算子检测信号的瞬态冲击,得到Teager能量序列;将结果分为训练集和测试集,将训练集输入到建立的LSTM故障诊断模型中进行学习,不断更新网络参数并提取出时间维度的特征信息;将训练好参数的LSTM模型应用于测试集,输出故障诊断结果。实验结果表明,提出的方法以端到端模式可以一次性诊断多种类型、尺寸的故障,具有很高的识别精度,是一种可以有效利用强背景噪声信号中时序特征的故障诊断方法。To solve these two problems that it is difficult to extract the characteristics of weak periodic impact caused by the strong background noise of the signal generated during the rolling bearing fault,and the general diagnosis model does not have a strong recognition effect on the timing characteristics of the fault vibration signal during the intelligent diagnosis of the bearing fault mode,this paper put forward a fault diagnosis method based on the maximum correlation kurtosis deconvolution(MCKD)algorithm,Teager energy operator and long short-term memory(LSTM).Firstly,the rolling bearing vibration signal is denoised by MCKD algorithm,the periodic impact characteristics of the signal which are covered by noise are extracted,the Teager energy operator is used to detect the transient impact of the signal and the Teager energy sequence is obtained.The results are then divided into training sets and test sets,the training set is input into the established LSTM fault diagnosis model for learning.Finally,the LSTM model with appropriate parameters is applied to the test set to output fault diagnosis results.The experimental results show that the proposed method can diagnose faults of various types and sizes at one time and has high identification accuracy.It is a fault diagnosis method that can effectively utilize the timing characteristics of strong background noise signals.
关 键 词:滚动轴承 故障诊断 最大相关峭度解卷积 TEAGER能量算子 长短期记忆网络
分 类 号:TH212[机械工程—机械制造及自动化] TH213.3
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42