检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Niloufar Shirani-bidabadi Rui Ma Michael Anderson
机构地区:[1]Connecticut Transportation Institute,University of Connecticut,Storrs-Mansfield,CT 06269,USA [2]Department of Civil and Environmental Engineering,University of Alabama in Huntsville,Huntsuille,AL 35899,USA
出 处:《Journal of Traffic and Transportation Engineering(English Edition)》2021年第2期170-185,共16页交通运输工程学报(英文版)
基 金:supported by New Faculty Award from UAH’s Office of the Vice President for Research and Economic Development.
摘 要:Recent comparative studies on mobility patterns are emerging to describe the changes in mobility patterns due to the COVID-19 pandemic.Most of the current studies utilize travel volume per day as the critical indicator and identify the impacted period by the dates of governmental lockdown or stay-at-home orders,which however may not accurately present the actual impacted dates.The objective of this study is to provide an alternative perspective to identify the normal and pandemic-influenced daily traffic patterns.Instead of only using traffic volumes per day or assuming the impacted travel pattern began with the stay-at-home order,the methodology in this study investigates the within-day timedependent travel speed as time series,and then applies dynamic time warping algorithm and hierarchical clustering unsupervised classification methods to classify days into various groups without assuming a start date for any group.Using the state-wide travel speed data in Alabama,these study measures dissimilarities among within-day travel speed time series.By incorporating the dissimilarities/distance matrix,various agglomerative hierarchical clustering(AHC)methods(average,complete,Ward’s)are tested to conduct proper unsupervised classification.The Ward’s AHC classification results show that within-day travel speed pattern in Alabama shifted more than two weeks before the issuance of the State stay-at-home order.The results further show that a new travel speed pattern appears at the end of stay-at-home order,which is different from either the normal pattern before the pandemic or the initial pandemic-influenced pattern,which leads to a conclusion that a’new normal’within-day travel pattern emerges.
关 键 词:COVID-19 Within-day traffic dynamics Dynamic time warping Hierarchical clustering Unsupervised classification
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28