检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏小林[1] 彭宇明[1] 张铁军[1] WEI Xiao-lin;PENG Yu-ming;ZHANG Tie-jun(Karamay Central Hospital of Xinjiang,Karamay 834000,Xinjiang Uygur Autonomous Region,P.R.C)
机构地区:[1]新疆克拉玛依市中心医院,新疆克拉玛依834000
出 处:《中国数字医学》2021年第5期36-40,共5页China Digital Medicine
摘 要:电子病历是由医生根据病人描述和检查结果进行推断总结出来的,是以非结构化文本形式进行存储和管理,是医疗信息化的核心数据资产,其基本信息单元是医疗实体。传统的实体识别方法是基于规则、词典机器学习的方法,这些在性能、效率和准确度上难以满足医疗信息化的发展需求。本文提出基于BERT的多层网络模型,简称为BBC,并将其应用于克拉玛依市中心医院电子病历信息抽取中,提取腹部超声检查结果中的症状实体。实验结果表明,本文提出的模型显著优于现有的方法,实体预测的F1值提升了2.3%。Electronic medical records are deduced and summarized by doctors based on patient description and examination results. They are stored and managed in the form of unstructured text. It is the core data asset of medical informatization, and its basic information unit is medical entity. The traditional entity recognition method is based on rules and dictionary machine learning, which is difficult to meet the development needs of medical informatization in terms of performance, efficiency and accuracy. This paper proposes a multi-layer network model based on BERT, referred to as BBC, and applies it to the electronic medical records information extraction of Karamay Central Hospital to extract symptom entities in the results of abdominal ultrasound examination. The experimental results show that the model proposed in this paper is significantly better than the existing methods, and the F1 value of entity prediction is increased by 2.3%.
分 类 号:R319[医药卫生—基础医学] TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229