检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李大明[1] LI Daming(Liangyungang Road Administration Division,Lianyungang Jiangsu 222000)
出 处:《智能建筑与工程机械》2021年第3期114-116,共3页Intelligent Building and Construction Machinery
摘 要:交通量预测作为公路可行性研究的核心内容,对其进行精准预测是对交通运输规划与管理研究的基础。交通运输问题随着车辆的增多变得日益复杂,故交通量预测逐渐变成研究的热点问题。本文结合智能计算、回归分析及灰色模型等理论,通过优化GM(1,1)模型,提出合理权重,结合回归模型和优化后的GM(1,1)模型,构建了优化的交通量组合预测模型。最后,经过滦马高速实际数据的检验,验证了该模型能够有效提高交通量短时预测精度。Traffic forecasting and accurate forecasting are central to highway feasibility studies and have important implications for traffic planning and management research.As the number of vehicles increases;transportation issues become more complex.A hot issue that theoretical researchers are concerned about is traffic forecasting,as traffic problems become more complex and the number of vehicles continues to grow.In this article,when optimizing a GM(1,1)model using regression analysis and gray model theory,we first combine intelligent calculations.Reasonable weights can be obtained by combining the regression model with the optimized GM(1,1)model.The establishment of a combination prediction model for linear traffic volume is mainly based on the gray model and the regression model.The actual data testing is mainly done on the Lima highway,and this model can effectively improve the accuracy of short-term traffic forecasts.
分 类 号:U494[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.228