智慧图书馆建设背景下高校图书馆资源采访模式探析  被引量:7

Study on the Resource Acquisition Mode of University Library under the Background of Smart Library Construction

在线阅读下载全文

作  者:刘晓叶[1] Liu Xiaoye(Zhengzhou University Library,Zhengzhou Henan 450001)

机构地区:[1]郑州大学图书馆,河南郑州450001

出  处:《情报探索》2021年第6期110-116,共7页Information Research

摘  要:[目的/意义]探索高校图书馆智慧化采访模式,为其创新发展提供参考。[方法/过程]分析当前主要采访模式,存在资源布局不均衡、图书利用率低、读者急需图书不能快速到位等问题。以用户需求为中心,图书馆实际工作需要为出发点,充分挖掘分析用户数据,通过文献分析和专家访谈,探究相应对策。[结果/结论]提出5G智能采访机器人作为现采的有效补充;优化读者荐购系统工作流程,构建读者急需图书电子版快采模式;利用人工智能机器学习算法做好用户需求分析,提高文献资源采购的针对性;吸收学科专家参与图书资源建设,加强项目化引导,支撑科研支持创新,建立多元融合的智慧采访生态体系。[Purpose/significance]The paper explores the intelligent acquisition model of university libraries to provide references for their innovative development.[Method/process]The paper analyses the current main acquisition mode,and the existing problems,such as uneven distribution of resources,low utilization rate of books,and readers in urgent need of books can’t be solved quickly and so on.Based on the user needs and the actual work needs of the library,the paper fully excavates and analyzes the user data,and explores the corresponding countermeasures through literature analysis and expert interviews.[Result/conclusion]The paper proposes:5G intelligent acquisition robots are as an effective supplement to current procurement;optimizing the reader recommendation system workflow,building a rapid acquisition model for readers’urgently needed books;using artificial intelligence machine learning algorithms to do a good job in user demand analysis and improve pertinence of literature resource procurement;absorbing subject experts to participate in the construction of book resources,strengthening project-based guidance,supporting scientific research and support innovation,and establishing a diverse and integrated intelligent acquisition ecosystem.

关 键 词:5G 采访机器人 机器学习 多元融合 智慧 

分 类 号:G250.7[文化科学—图书馆学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象