检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yunshyong Chow Sophia R-J.Jang Hua-Ming Wang
机构地区:[1]Institute of Mathematics,Academia Sinica Taipei 10617,Taiwan [2]Department of Mathematics and Statistics Texas Tech University,Lubbock,TX 79409,USA [3]Department of Statistics,Anhui Normal University Wuhu 241003,Anhui,P.R.China
出 处:《International Journal of Biomathematics》2020年第7期133-158,共26页生物数学学报(英文版)
摘 要:We propose and investigate a discrete-time predator-prey system with cooperative hunting in the predator population.The model is constructed from the classical Nicholson-Bailey host-parasitoid system with density dependent growth rate.A sufficient condition based on the model parameters for which both populations can coexist is derived,namely that the predator’s maximal reproductive number exceeds one.We study existence of interior steady states and their stability in certain parameter regimes.It is shown that the system behaves asymptotically similar to the model with no cooperative hunting if the degree of cooperation is small.Large cooperative hunting,however,may promote persistence of the predator for which the predator would otherwise go extinct if there were no cooperation.
关 键 词:Cooperative hunting discrete predator-prey system predator persistence Neimark-Sacker bifurcation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229