基于U-net的双能血管减影算法  被引量:1

A dual energy subtraction algorithm based on U-net

在线阅读下载全文

作  者:成铭扬 李亮[1,2] CHENG Mingyang;LI Liang(Department of Engineering Physics,Tsinghua University,Beijing 100084,China;National Engineering Laboratory for Scanning and Detection Technology of Hazardous Explosives,Tsinghua University,Beijing 100084,China)

机构地区:[1]清华大学工程物理系,北京100084 [2]危爆物品扫描探测技术国家工程实验室,清华大学,北京100084

出  处:《中国体视学与图像分析》2021年第1期62-70,共9页Chinese Journal of Stereology and Image Analysis

基  金:国家重点研发计划“数字诊疗装备研发”重点专项(No.2017YFC0109103)。

摘  要:传统的数字血管造影(Digital Subtraction Angiography,USA)技术是通过在病人体内注射造影剂前后两次曝光来实现的,其劣势是两次曝光间存在时间差,被摄物体运动产生位移,导致减影图像出现运动伪影。为解决这一问题,本文提出了一种使用双层平板探测器,仅通过注射造影剂后一次曝光实现双能量减影的方法。该方法使用高频分量图作为跳接结构图像的U-net网络,训练集为不含碘液的高低能头模图像,输入高能图像并以低能图像作为真值拟合;测试集为含碘液的高低能头模图像,输入高能图像后碘液区域因未经训练,输出的预测图像与低能图像相减,消去骨头、软组织等背景的数值,实现最终的血管剪影。最后,本文在锥形束CBCT成像平台上,设计了相关实验和评价指标,验证分析了上述U-net方法实现双能DSA剪影的可行性和性能,相较于传统多项式拟合方法在PSNR和CNR等指标均有显著提升。The traditional digital subtraction angiography(DSA)is realized by two exposures before and after the injection of contrast agent to patients.Its disadvantage is that there is a time difference between two exposures,which causes motion artifacts in the subtraction image.In order to solve this problem,this paper proposes a method of dual-energy subtraction using a double-layer flat-panel detector with one exposure only after injection of contrast agent.We use U-net which contains high-frequency component images as shortcut connections.The training set is the high and low energy images of a head phantom without iodine solution.We input the high energy images and use the low energy images as the labels to fit.The test set is the high and low energy images of the head phantom containing the iodine solution.We input the high energy image and output the predicted image.Background values such as bones and soft tissues is eliminated by subtraction of low-energy images.The final blood vessel silhouette is achieved because the iodine area is not trained.Ultimately,we design related experiments and evaluation indicators on the cone-beam CBCT imaging platform to verify and analyze the feasibility,as well as the performance of the above U-net method to achieve dual-energy DSA.Compared with the traditional polynomial fitting method,the PSNR and CNR indicators are significantly improved for the proposed method.

关 键 词:X射线 深度学习 U-net 数字血管造影 双能减影 

分 类 号:N3[自然科学总论] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象