Strengthening and toughening mechanism of a Cu-bearing high-strength low-alloy steel with refined tempered martensite/bainite(M/B)matrix and minor inter-critical ferrite  被引量:6

在线阅读下载全文

作  者:Fei Zhu Feng Chai Xiao-bing Luo Zheng-yan Zhang Cai-fu Yang 

机构地区:[1]Department of Structural Steels,Central Iron and Steel Research Institute,Beijing 100081,China

出  处:《Journal of Iron and Steel Research International》2021年第4期464-478,共15页

基  金:National Key Research and Development Program of China(No.2017YFB0304501).

摘  要:The microstructure–mechanical property relationship of a Cu-bearing low-carbon high-strength low-alloy steel,subjected to a novel multistage heat treatment including quenching(Q),lamellarization(L)and tempering(T),is presented.Yield strength of 989.5 MPa and average toughness at-80℃of 41 J were obtained in this steel after quenching and tempering(QT)heat treatments.Specimen QLT gained a little lower yield strength(982.5 MPa),but greatly enhanced average toughness at-80℃(137 J).To further clarify the strengthening and toughening mechanisms in specimen QLT,parameters of microstructural characteristic and crack propagation process were compared and analyzed for specimens Q,QL,QT and QLT.The microstructure of tempered martensite/bainite(M/B)in specimen QT changed to refined tempered M/B matrix mixed with minor IF(inter-critical ferrite)in specimen QLT.Cu-rich precipitates existed in tempered M/B for both specimens QT and QLT,as well as in IF.Compared with QT,adding a lamellarization step before tempering made the effective grains of specimen QLT refined and also led to coarser Cu-rich precipitates in tempered M/B matrix.The weaker strengthening effect of coarser Cu-rich precipitates should be a key reason for the slightly lower yield strength in specimen QLT than in specimen QT.No austenite was found in all specimens Q,QL,QT and QLT.Specimen QLT showed purely ductile fracture mode at-80℃due to the refined effective grains.The greatly improved toughness is mainly attributed to the enhanced energy of crack propagation.The combination of refined microstructure,softened matrix and deformation of minor'soft'IF during crack propagation led to the most superior toughness of specimen QLT among all specimens.

关 键 词:High-strength low-alloy steel Multistage heat treatment Low-temperature toughness Strengthening mechanism Grain refinement Crack propagation 

分 类 号:TG142.12[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象