检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈妮 应丰 王静 李健 Chen Ni;Ying Feng;Wang Jing;Li Jian(Powerchina Huadong Engineering Corporation Limited,Hangzhou 311122,China)
机构地区:[1]中国电建集团华东勘测设计研究院有限公司,浙江杭州311122
出 处:《遥感技术与应用》2021年第2期285-292,共8页Remote Sensing Technology and Application
摘 要:随着现代遥感技术的迅速发展,遥感图像的质量和数量得到了显著的提升,新技术带来的高分辨率遥感图像所蕴含的信息也更加丰富,如何利用人工智能手段辅助挖掘这些丰富的信息也成为了遥感图像分析与理解的重要内容。与此同时,以深度卷积神经网络为代表的人工智能技术在图像处理领域大放异彩。得益于类人眼的分层卷积池化模型,深度卷积神经网络可以在图像分割和分类等任务上取得优异的结果。因此采用U-Net为代表的深度卷积神经网络对2 m的高分辨率遥感影像进行了特征提取、分割和分类,不同于传统基于手工设定图像特征的方法,U-Net可以自动对海量高分辨率的遥感图像进行特征提取,从而充分挖掘高分辨率遥感影像中复杂的非线性特征、光谱特征和纹理特征。实验结果表明:利用训练好的U-Net模型对新昌县土地利用分类计算时间为55.7 s,分类准确率可达90.95%,Kappa系数为0.86。U-Net模型可以快速、精确地提取高分辨率遥感影像中的地表覆盖特征,得到高精度的土地利用分类结果,说明将该模型应用于遥感影像土地利用分类提取有着广阔前景。With the rapid development of modern remote sensing technology,remote sensing image with high quality and quantity has been significantly promoted,new technology of high resolution remote sensing images contain more abundant information,how to make full use of the means of artificial intelligence auxiliary to mine these abundant information has become one of the important researches in remote sensing image analysis and understanding.At the same time,represented by deep convolutional neural networks based Artificial Intelligence(AI)technology is brilliant in the field of image processing.Thanks to the layer-wised convolutional and pooling structures which mimces human brain retinal systems,deep convolutional neural network can achieve excellent performance in image segmentation and classification.So this paper proposed a U-Net based model to extract features from high resolution remote sensing images with 2 m spatial resolution.Different from traditional methods based on hand craft image features,the proposed model can be automatically applied on massive amounts of high resolution remote sensing image feature extraction,it can also exert complicated nonlinear characteristics of high resolution remote sensing image with the help of the spectral features and texture features.The experimental results show that the time of using the U-Net model to calculate the land use classification of Xinchang County is 55.7 s,and the accuracy is 90.95%,and the kappa coefficient is 0.86.U-Net model can quickly and accurately obtain the land cover features in high-resolution remote sensing images,and can get high-precision land use classification results,which shows that the deep learning into remote sensing image land use classification extraction has a broad prospect.
关 键 词:全卷积神经网络 U-Net 土地利用分类 高分辨遥感图像
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13