考虑源荷功率随机性和相关性的主导节点选择与无功分区方法  被引量:26

Pilot-bus Selection and Network Partitioning Method Considering Randomness and Correlation of Source-Load Power

在线阅读下载全文

作  者:杨彪 颜伟[2] 莫静山 YANG Biao;YAN Wei;MO Jingshan(State Grid Energy Research Institute Co.,Ltd.,Beijing 102209,China;State Key Laboratory of Power Transmission Equipment&System Security and New Technology(Chongqing University),Chongqing 400044,China)

机构地区:[1]国网能源研究院有限公司,北京市102209 [2]输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆市400044

出  处:《电力系统自动化》2021年第11期61-67,共7页Automation of Electric Power Systems

基  金:国家自然科学基金资助项目(51677012)。

摘  要:为保持自动电压控制(AVC)系统的可靠运行,无功分区方案需适应较长时间段内源荷功率的随机变化。为此,提出一种考虑源荷功率随机性和相关性的主导节点选择与无功分区的协调优化方法。模型考虑了源荷功率的随机性和相关性及其变化时无功分区的平衡要求,并提出了考虑分区最大无功需求的场景压缩技术以实现源荷功率典型场景的模拟;采用基于目标相对占优的免疫遗传算法对模型进行求解。以IEEE 39节点系统仿真验证所述方法的有效性,仿真结果表明分区方案可以充分满足源荷功率随机变化下的无功平衡要求。To ensure the reliable operation of the automatic voltage control(AVC)system,a network partitioning scheme should adapt to random changes of the source-load power during a long period.Therefore,a coordinated optimization method for the pilotbus selection and network partitioning considering the randomness and correlation of source-load power is proposed.The model considers the randomness and correlation of the source-load power and the balance requirements of the network partitioning when the source-load power changes.It also proposes a scenario compression technology that considers the maximal reactive power demand of the partitioning to realize the simulation of the typical scenarios of source-load power.An immune genetic algorithm based on target relative dominance is used to solve the model.The effectiveness of the method is verified by the simulation of IEEE39-bus system.The simulation results show that the partitioning scheme can fully meet the reactive power balance requirements with the random changes of source-load power.

关 键 词:无功分区 主导节点 源荷功率 免疫遗传算法 

分 类 号:TM714.3[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象